- 1.
Haldorai, A. A Survey of Renewable Energy Sources and their Contribution to Sustainable Development. J. Enterp. Bus. Intell. 2022, 2, 211–222.
- 2.
Jayabal, R.; Sivanraju, R. Environmental and Emission Analysis of Biodiesel/Bioethanol/Nanoparticles Blends with Hydrogen Addition in Diesel Engine. Energy Sci. Eng. 2025, 70151, 1–8.
- 3.
Pandhurnekar, C.; Pandhurnekar, H.; Yadao, B. Microwave-Assisted Synthesis of Biodiesel and Related Fuel Additives. In The Production of Biodiesel and Related Fuel Additives; Bentham Science Publishers: Sharjah, United Arab Emirates, 2024; pp. 221–258.
- 4.
Yang, C.; Wang, Z.; Li, J.; et al. Effects of ammonia energy fractions, diesel injection timings, and loads on combustion and emission characteristics of PFI-DI ammonia-diesel engines. Int. J. Engine Res. 2024, 25, 743–757.
- 5.
Van Pham, V.; Park, S. Catalysis for Renewable Energy and Sustainable Development. Top. Catal. 2024, 67, 1053–1054.
- 6.
Tran, D.T.; Tran, P.K.; Malhotra, D.; et al. Current status of developed electrocatalysts for water splitting technologies: From experimental to industrial perspective. Nano Converg. 2025, 12, 9.
- 7.
Tijent, F.Z.; Voss, P.; Faqir, M. Recent advances in InGaN nanowires for hydrogen production using photoelectrochemical water splitting. Mater. Today Energy 2023, 33, 101275.
- 8.
Chandran, B.; Oh, J.K.; Lee, S.W.; et al. Solar-Driven Sustainability: III–V Semiconductor for Green Energy Production Technologies. Nano-Micro Lett. 2024, 16, 244.
- 9.
Lin, J.; Wang, W.; Li, G. Modulating surface/interface structure of emerging InGaN nanowires for efficient photoelectrochemical water splitting. Adv. Funct. Mater. 2020, 30, 2005677.
- 10.
Chen, C.; Sun, M.; Zhang, F.; et al. Adjacent Fe Site boosts electrocatalytic oxygen evolution at Co site in single-atom-catalyst through a dual-metal-site design. Energy Environ. Sci. 2023, 16, 1685–1696.
- 11.
Zhang, Q.; Guan, J. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.
- 12.
Echeverría, S.A.; Froidevaux, R.; Gaborieau, S.; et al. Hybrid catalysis: An efficient tool for biomass valorization and for the production of new building blocks in chemistry. Comptes Rendus. Chim. 2025, 28, 481–505.
- 13.
Wang, J.; Shirvani, H.; Zhao, H.; et al. Lignocellulosic biomass valorization via bio-photo/electro hybrid catalytic systems. Biotechnol. Adv. 2023, 66, 108157.
- 14.
Liu, P.; Wang, J.; Wang, X.; et al. A superhydrophilic NiFe electrode for industrial alkaline water electrolysis. Int. J. Hydrogen Energy 2024, 49, 285–294.
- 15.
Smith, B.J.; Graziano, D.J.; Riddle, M.E.; et al. Platinum Group Metal Catalysts: Supply Chain Deep Dive Assessment; USDOE Office of Policy (PO): Washington, DC, USA, 2022.
- 16.
Wang, Y.; Pang, Y.; Xu, H.; et al. PEM Fuel cell and electrolysis cell technologies and hydrogen infrastructure development—A review. Energy Environ. Sci. 2022, 15, 2288–2328.
- 17.
Luque-Urrutia, J.A.; Ortiz-García, T.; Solà, M.; Poater, A. Green energy by hydrogen production from water splitting, water oxidation catalysis and acceptorless dehydrogenative coupling. Inorganics 2023, 11, 88.
- 18.
Deng, W.; Feng, Y.; Fu, J.; et al. Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy Environ. 2023, 8, 10–14.
- 19.
Ganesh, I. Electrochemical conversion of carbon dioxide into renewable fuel chemicals—The role of nanomaterials and the commercialization. Renew. Sustain. Energy Rev. 2016, 59, 1269–1297.
- 20.
Sheldon, R.A. Fundamentals of green chemistry: Efficiency in reaction design. Chem. Soc. Rev. 2012, 41, 1437–1451.
- 21.
Park, S.H.; To, D.T.; Myung, N.V. A review of nickel-molybdenum based hydrogen evolution electrocatalysts from theory to experiment. Appl. Catal. A Gen. 2023, 651, 119013.
- 22.
Duma, Z.G.; Dyosiba, X.; Moma, J.; et al. Thermocatalytic hydrogenation of CO2 to methanol using Cu-ZnO bimetallic catalysts supported on metal–organic frameworks. Catalysts 2022, 12, 401.
- 23.
Chen, Z.; Wei, W.; Ni, B.J. Cost-effective catalysts for renewable hydrogen production via electrochemical water splitting: Recent advances. Curr. Opin. Green Sustain. Chem. 2021, 27, 100398.
- 24.
Patricia, D.P.; Solomon, R.V. Recent Advances in Lanthanide-based Metal-Organic Frameworks for 1 Photocatalytic Hydrogen Evolution Application. Energy Adv. 2025, 4, 597–623.
- 25.
Zhou, P.; Navid, I.A.; Ma, Y.; et al. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature 2023, 613, 66–70.
- 26.
Tentu, R.D.; Basu, S. Photocatalytic water splitting for hydrogen production. Curr. Opin. Electrochem. 2017, 5, 56–62.
- 27.
Li, L.; Wang, P.; Shao, Q.; et al. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.
- 28.
Bulakhe, S.; Shinde, N.; Kim, J.S.; et al. Recent advances in non-precious Ni-based promising catalysts for water splitting application. Int. J. Energy Res. 2022, 46, 17829–17847.
- 29.
Cao, Y. Roadmap and direction toward high-performance oxygen e hydrogen evolution catalysts. ACS Nano 2021, 15, 11014–11039.
- 30.
Over, H. Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting. ACS Catal. 2021, 11, 8848–8871.
- 31.
Nicole, S.L.; Li, Y.; Xie, W.; et al. Heterointerface and tensile strain effects synergistically enhances overall water-splitting in Ru/RuO2 aerogels. Small 2023, 19, 2206844.
- 32.
Bodhankar, P.M.; Sarawade, P.B.; Singh, G.; et al. Recent advances in highly active nanostructured NiFe LDH catalyst for electrochemical water splitting. J. Mater. Chem. A 2021, 9, 3180–3208.
- 33.
Mehtab, A.; Alshehri, S.M.; Ahmad, T. Photocatalytic and photoelectrocatalytic water splitting by porous g-C3N4 nanosheets for hydrogen generation. ACS Appl. Nano Mater. 2022, 5, 12656–12665.
- 34.
Wagh, K.S.; Mane, S.M.; Teli, A.M.; et al. Recent Advancements in Co3O4-Based Composites for Enhanced Electrocatalytic Water Splitting. Micromachines 2024, 15, 1450.
- 35.
Huang, M.; Qifei, B.O.; Juan, L.I.; et al. Hydrogen production via steam reforming of methanol on Cu/ZnO/Al2O3 catalysts: Effects of Al2O3 precursors. J. Fuel Chem. Technol. 2024, 52, 1443–1453.
- 36.
Meng, Y.; Huang, H.; Zhang, Y.; et al. Recent advances in the theoretical studies on the electrocatalytic CO2 reduction based on single and double atoms. Front. Chem. 2023, 11, 1172146.
- 37.
Ye, J.; Dimitratos, N.; Rossi, L.M.; et al. Hydrogenation of CO2 for sustainable fuel and chemical production. Science 2025, 387, eadn9388.
- 38.
Akhtar, M.S.; Zaman, W. Advancing Sustainable Catalysis: Catalytic Solutions for Green Chemistry and the Energy Transition. Catalysts 2025, 15, 511.
- 39.
Osman, A.I.; Elgarahy, A.M.; Eltaweil, A.S.; et al. Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis and electrocatalysis. Environ. Chem. Lett. 2023, 21, 1315–1379.
- 40.
Kumari, N.; Haider, M.A.; Basu, S. Mechanism of Catalytic and Electrocatalytic CO2 Reduction to Fuels and Chemicals. In Electrochemical Reduction of Carbon Dioxide Fundamentals and Technologies, 1st ed.; Taylor & Francis: Boca Raton, FL, USA, 2016; pp. 267–291.
- 41.
Cao, L. Recent advances in the application of machine-learning algorithms to predict adsorption energies. Trends Chem. 2022, 4, 347–360.
- 42.
Zhang, R.; Zhu, C.; Jiang, Y.; et al. An eco-friendly catalytic pretreatment using recyclable CuFeO2 catalyst for enhancing the production of bio-based ethanol and jet fuel. Biomass Bioenergy 2025, 194, 107668.
- 43.
Jiao, S.; Fu, X.; Huang, H. Descriptors for the evaluation of electrocatalytic reactions: D-band theory and beyond. Adv. Funct. Mater. 2022, 32, 2107651.
- 44.
Roth-Zawadzki, A.M.; Nielsen, A.J.; Tankard, R.E.; et al. Dual and triple atom electrocatalysts for energy conversion (CO2RR, NRR, ORR, OER, and HER): Synthesis, characterization, and activity evaluation. ACS Catal. 2024, 14, 1121–1145.
- 45.
Gautam, J.; Lee, S.Y.; Park, S.J. Strategic structural design of transition metal electrocatalysts for efficient water splitting: A comprehensive review. Nano Today 2024, 59, 102487.
- 46.
Lu, S.; Wang, Y.; Xiang, H.; et al. Mass transfer effect to electrochemical reduction of CO2: Electrode, electrocatalyst and electrolyte. J. Energy Storage 2022, 52, 104764.
- 47.
Singh, R.; Wang, L.; Huang, J. In-Situ Characterization Techniques for Mechanism Studies of CO2 Hydrogenation. ChemPlusChem 2024, 89, e202300511.
- 48.
Zheng, R.; Liu, Z.; Wang, Y.; et al. The future of green energy and chemicals: Rational design of catalysis routes. Joule 2022, 6, 1148–1159.
- 49.
Li, X.; Yang, X.; Huang, Y.; et al. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, 1902031.
- 50.
Rivera-Cárcamo, C.; Serp, P. Single atom catalysts on carbon-based materials. ChemCatChem 2018, 10, 5058–5091. https://doi.org/10.1002/cctc.201801174.
- 51.
Liu, J.; Zhang, H.; Qiu, M.; et al. A review of non-precious metal single atom confined nanomaterials in different structural dimensions (1D–3D) as highly active oxygen redox reaction electrocatalysts. J. Mater. Chem. A 2020, 8, 2222–2245.
- 52.
Zhang, Y.; Yang, J.; Ge, R.; et al. The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coord. Chem. Rev. 2022, 461, 214493.
- 53.
Kaur, G.; Kaur, A.; Sud, D. Lanthanide-based metal-organic frameworks as a promising visible light photocatalyst for hydrogen production. In Handbook of Emerging Materials for Sustainable Energy; Elsevier: Amsterdam, The Netherlands, 2024; pp. 381–396.
- 54.
Ede, S.R.; Luo, Z. Tuning the intrinsic catalytic activities of oxygen-evolution catalysts by doping: A comprehensive review. J. Mater. Chem. A 2021, 9, 20131–20163.
- 55.
Yang, Y.; Li, P.; Zheng, X.; et al. Anion-exchange membrane water electrolyzers and fuel cells. Chem. Soc. Rev. 2022, 51, 9620–9693.
- 56.
Arshad, M.Y.; Halog, A. Life cycle assessment of various process routes including biological processes for renewable fuel production. In Sustainable and Green Catalytic Processes for Renewable Fuel Production with Net-Zero Emissions; Elsevier: Amsterdam, The Netherlands, 2025; pp. 377–428.
- 57.
Zehri, C. Renewable energy and industrial innovation: Catalysts for economic and trade growth. Russ. J. Econ. 2025, 11, 93–122.
- 58.
Ya, Z.; Zhang, S.; Xu, D.; et al. Coupling Plastic Upgrading and Photocatalysis: Catalytic Mechanisms and Design Principles. ACS Catal. 2025, 15, 5339–5369.
- 59.
Sun, D.; Zhang, Y.; Zhou, Y.; et al. Photocatalytic and electrochemical synthesis of biofuel via efficient valorization of biomass. Adv. Energy Mater. 2025, 15, 2406098.