- 1.
Olabi, A.G.; Abbas, Q.; Shinde, P.A.; et al. Rechargeable batteries: Technological advancement, challenges, current and emerging applications. Energy 2023, 266, 126408.
- 2.
Sarmah, S.; Lakhanlal; Kakati, B.K.; et al. Recent advancement in rechargeable battery technologies. Wiley Interdiscip. Rev. Energy Environ. 2023, 12, e461.
- 3.
Abbas, Q.; Mirzaeian, M.; Hunt, M.R.; et al. Current state and future prospects for electrochemical energy storage and conversion systems. Energies 2020, 13, 5847.
- 4.
Abbas, Q.; Khurshid, H.; Yoosuf, R.; et al. Engineering of nickel, cobalt oxides and nickel/cobalt binary oxides by electrodeposition and application as binder free electrodes in supercapacitors. Sci. Rep. 2023, 13, 15654.
- 5.
Mu, T.; Wang, Z.; Yao, N.; et al. Technological penetration and carbon-neutral evaluation of rechargeable battery systems for large-scale energy storage. J. Energy Storage 2023, 69, 107917.
- 6.
Patel, M.; Mishra, K.; Banerjee, R.; et al. Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems. J. Energy Chem. 2023, 81, 221–259.
- 7.
Khan, T.; Garg, A.K.; Gupta, A.; et al. Comprehensive review on latest advances on rechargeable batteries. J. Energy Storage 2023, 57, 106204.
- 8.
Singh, A.N.; Islam, M.; Meena, A.; et al. Unleashing the potential of sodium-ion batteries: Current state and future directions for sustainable energy storage. Adv. Funct. Mater. 2023, 33, 2304617.
- 9.
Yu, T.; Li, G.; Duan, Y.; et al. The research and industrialization progress and prospects of sodium ion battery. J. Alloys Compd. 2023, 958, 170486.
- 10.
Abu, S.M.; Hannan, M.; Lipu, M.H.; et al. State of the art of lithium-ion battery material potentials: An analytical evaluations, issues and future research directions. J. Clean. Prod. 2023, 394, 136246.
- 11.
Song, Z.; Ma, Y.; Cheng, X.; et al. Development of advanced anodes for solid-state lithium batteries. Mater. Today 2025, 88, 1005–1027.
- 12.
Huang, M.; Wang, X.; Liu, X.; et al. Fast ionic storage in aqueous rechargeable batteries: From fundamentals to applications. Adv. Mater. 2022, 34, 2105611.
- 13.
Ma, H.; Wang, F.; Shen, M.; et al. Advances of LiCoO2 in Cathode of Aqueous Lithium-Ion Batteries. Small Methods 2024, 8, 2300820.
- 14.
Xin, Y.-M.; Xu, H.-Y.; Ruan, J.-H.; et al. A Review on Application of LiFePO4 based composites as electrode materials for Lithium Ion Batteries. Int. J. Electrochem. Sci. 2021, 16, 210655.
- 15.
Guan, J.; Liu, M. Transport properties of LiMn2O4 electrode materials for lithium-ion batteries. Solid State Ion. 1998, 110, 21–28.
- 16.
Guo, F.; Hu, Z.; Xie, Y.; et al. Nanostructured LiNi0.8Co0.1Mn0.1O2 with a Hollow Morphology Boosting Cycling Stability as Cathode Materials for Lithium-Ion Batteries. ACS Appl. Nano Mater. 2024, 7, 15215–15222.
- 17.
Ma, L.; Liu, G.; Wang, Y.; et al. Preparation and Performance of Regenerated Al2O3-Coated Cathode Material LiNi0.8Co0.15Al0.05O2 from Spent Power Lithium-Ion Batteries. Molecules 2023, 28, 5165.
- 18.
Zhao, W.; Zhao, C.; Wu, H.; et al. Progress, challenge and perspective of graphite-based anode materials for lithium batteries: A review. J. Energy Storage 2024, 81, 110409.
- 19.
Iqbal, M.Z.; Zakar, S.; Khizar, A.; et al. Investigating the potential of transition metal sulfides as electrode material for energy storage applications. Appl. Phys. A 2024, 130, 541.
- 20.
Muthu, P.; Rajagopal, S.; Saju, D.; et al. Review of Transition Metal Chalcogenides and Halides as Electrode Materials for Thermal Batteries and Secondary Energy Storage Systems. ACS Omega 2024, 9, 7357–7374.
- 21.
AbdelHamid, A.A.; Mendoza-Garcia, A.; Lee, S.S.; et al. Metal oxide-and metal-loaded mesoporous carbon for practical high-performance Li-ion battery anodes. Nano Energy 2024, 119, 109025.
- 22.
Sun, Y.; Wu, Q.; Liang, X.; et al. Recent developments in carbon-based materials as high-rate anode for sodium ion batteries. Mater. Chem. Front. 2021, 5, 4089–4106.
- 23.
Zhai, H.; Xia, B.Y.; Park, H.S. Ti-based electrode materials for electrochemical sodium ion storage and removal. J. Mater. Chem. A 2019, 7, 22163–22188.
- 24.
Lee, M.; Kim, M.-S.; Oh, J.-M.; et al. Hybridization of layered titanium oxides and covalent organic nanosheets into hollow spheres for high-performance sodium-ion batteries with boosted electrical/ionic conductivity and ultralong cycle life. ACS Nano 2023, 17, 3019–3036.
- 25.
Fang, Y.; Luan, D.; Lou, X.W. Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv. Mater. 2020, 32, 2002976.
- 26.
Gong, Y.; Li, Y.; Li, Y.; et al. Metal selenides anode materials for sodium ion batteries: Synthesis, modification, and application. Small 2023, 19, 2206194.
- 27.
Park, J.; Han, D.; Son, J.P.; et al. Extending the Electrochemical Window of Na+ Halide Nanocomposite Solid Electrolytes for 5 V-Class All-Solid-State Na-Ion Batteries. ACS Energy Lett. 2024, 9, 2222–2230.
- 28.
Gupta, Y.; Siwatch, P.; Karwasra, R.; et al. Transition metal oxides as the electrode material for sodium-ion capacitors. Nanofabrication 2023, 8, 1–16.
- 29.
He, L.; Guo, J.; Liu, S.; et al. Progress of metal phosphides as the anode materials for sodium ion batteries. J. Alloys Compd. 2024, 997, 174924.
- 30.
Madhuri, A.; Jena, S.; Swain, B.P. Transition Metal Nitrides as Energy Storage Materials. In Energy Materials: Structure, Properties and Applications; Springer: Singapore, 2023; pp. 57–75.
- 31.
Pan, Z.; Chen, H.; Zeng, Y.; et al. Fluorine Chemistry in Lithium-Ion and Sodium-Ion Batteries; OAE Publishing Inc.: Alhambra, CA, USA, 2023.
- 32.
Wei, X.; Wang, X.; Tan, X.; et al. Nanostructured conversion-type negative electrode materials for low-cost and high-performance sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1804458.
- 33.
Huang, Y.; Zheng, Y.; Li, X.; et al. Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 2018, 3, 1604–1612.
- 34.
Ma, Y.; Ma, Y.; Bresser, D.; et al. Cobalt disulfide nanoparticles embedded in porous carbonaceous micro-polyhedrons interlinked by carbon nanotubes for superior lithium and sodium storage. ACS Nano 2018, 12, 7220–7231.
- 35.
Song, Z.; Ma, Y.; Wang, K.; et al. Zinc-regulated hard carbon as a sodium-ion battery anode material. J. Power Sources 2025, 640, 236798.
- 36.
Wang, J.; Wu, P.; Wang, K.; et al. Composite (bi-) metallic oxides with heterostructure and heteroatom-doped porous carbon as advanced potassium-ion battery anodes. Batter. Supercaps 2025, 8, e202400779.
- 37.
Li, P.; Shen, Y.; Li, X.; et al. Fullerene-intercalated graphitic carbon nitride as a high-performance anode material for sodium-ion batteries. Energy Environ. Mater. 2022, 5, 608–616.
- 38.
Hankel, M.; Ye, D.; Wang, L.; et al. Lithium and sodium storage on graphitic carbon nitride. J. Phys. Chem. C 2015, 119, 21921–21927.
- 39.
Gope, S.; Malunavar, S.; Bhattacharyya, A.J. Li–Ion-Conducting Pillar-Like Graphitic Carbon Nitrides as Novel Anodes for Li–Ion Batteries. ChemistrySelect 2018, 3, 5364–5376.
- 40.
Liu, D.; Zhang, C.; Zhou, G.; et al. Catalytic effects in lithium–sulfur batteries: Promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018, 5, 1700270.
- 41.
Li, Y.; Li, X.; Zhang, H.; et al. Porous graphitic carbon nitride for solar photocatalytic applications. Nanoscale Horiz. 2020, 5, 765–786.
- 42.
Wang, L.; Wang, K.; He, T.; et al. Graphitic carbon nitride-based photocatalytic materials: Preparation strategy and application. ACS Sustain. Chem. Eng. 2020, 8, 16048–16085.
- 43.
Vaya, D.; Kaushik, B.; Surolia, P.K. Recent advances in graphitic carbon nitride semiconductor: Structure, synthesis and applications. Mater. Sci. Semicond. Process. 2022, 137, 106181.
- 44.
Liang, Q.; Shao, B.; Tong, S.; et al. Recent advances of melamine self-assembled graphitic carbon nitride-based materials: Design, synthesis and application in energy and environment. Chem. Eng. J. 2021, 405, 126951.
- 45.
Lu, C.; Chen, X. Nanostructure engineering of graphitic carbon nitride for electrochemical applications. ACS Nano 2021, 15, 18777–18793.
- 46.
Ni, Y.; Wang, R.; Zhang, W.; et al. Graphitic carbon nitride (g-C3N4)-based nanostructured materials for photodynamic inactivation: Synthesis, efficacy and mechanism. Chem. Eng. J. 2021, 404, 126528.
- 47.
Gao, X.; Li, Q.-Y.; Wang, Y.-L.; et al. A facile soft-hard template cooperative organization approach for mesoporous g-C3N4 with high photocatalytic performance. Appl. Surf. Sci. 2024, 657, 159574.
- 48.
Obregón, S. Exploring nanoengineering strategies for the preparation of graphitic carbon nitride nanostructures. FlatChem 2023, 38, 100473.
- 49.
Zeng, Y.; Zhan, X.; Li, H.; et al. Bottom-to-Up synthesis of functional carbon nitride polymer: Design principles, controlled synthesis and applications. Eur. Polym. J. 2023, 182, 111734.
- 50.
Groenewolt, M.; Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 2005, 17, 1789–1792.
- 51.
Gao, R.; Liao, Q.; Sun, F.; et al. Mesoporous graphitic carbon nitride for photocatalytic coenzyme regeneration. Microporous Mesoporous Mater. 2024, 365, 112890.
- 52.
Bu, L.; Xie, Q.; Ming, H. Gold nanoparticles decorated three-dimensional porous graphitic carbon nitrides for sensitive anodic stripping voltammetric analysis of trace arsenic (III). J. Alloys Compd. 2020, 823, 153723.
- 53.
Ajiboye, T.O.; Kuvarega, A.T.; Onwudiwe, D.C. Graphitic carbon nitride-based catalysts and their applications: A review. Nano-Struct. Nano-Objects 2020, 24, 100577.
- 54.
Xu, Z.; Kong, L.; Wang, H.; et al. Soft-template assisted preparation of hierarchically porous graphitic carbon nitride layers for high-performance supercapacitors. J. Appl. Polym. Sci. 2022, 139, e52947.
- 55.
Antil, B.; Deka, S. Porous Graphitic Carbon Nitride Nanostructures and Their Application in Photocatalytic Hydrogen Evolution Reaction. Heterog. Nanocatalysis Energy Environ. Sustain. 2022, 1, 133–163.
- 56.
Wang, H.; Liu, Y.; Kong, L.; et al. Porous graphitic carbon nitride nanosheets with three-dimensional interconnected network as electrode for supercapacitors. J. Energy Storage 2023, 63, 106935.
- 57.
Li, H.; Wang, L.; Liu, Y.; et al. Mesoporous graphitic carbon nitride materials: Synthesis and modifications. Res. Chem. Intermed. 2016, 42, 3979–3998.
- 58.
Umekar, M.S.; Bhusari, G.S.; Bhoyar, T.; et al. Graphitic carbon nitride-based photocatalysts for environmental remediation of organic pollutants. Curr. Nanosci. 2023, 19, 148–169.
- 59.
Nazir, A.; Huo, P.; Rasool, A.T. Recent advances on graphitic carbon nitride-based S-scheme photocatalysts: Synthesis, environmental applications, and challenges. J. Organomet. Chem. 2023, 1004, 122951.
- 60.
Kailasam, K.; Epping, J.D.; Thomas, A.; et al. Mesoporous carbon nitride–silica composites by a combined sol–gel/thermal condensation approach and their application as photocatalysts. Energy Environ. Sci. 2011, 4, 4668–4674.
- 61.
Dharani, S.; Gnanasekaran, L.; Arunachalam, S.; et al. Photodegrading Rhodamine B dye with cobalt ferrite-graphitic carbon nitride (CoFe2O4/g-C3N4) composite. Environ. Res. 2024, 258, 119484.
- 62.
Dharmarajan, N.P.; Vidyasagar, D.; Yang, J.H.; et al. Bio-inspired supramolecular self-assembled carbon nitride nanostructures for photocatalytic water splitting. Adv. Mater. 2024, 36, 2306895.
- 63.
Asrami, M.R.; Jourshabani, M.; Park, M.H.; et al. A unique and well-designed 2D graphitic carbon nitride with sponge-like architecture for enhanced visible-light photocatalytic activity. J. Mater. Sci. Technol. 2023, 159, 99–111.
- 64.
Shao, S.; Liu, X.; Wang, R.; et al. Morphologic and microstructural modulation of graphitic carbon nitride through EDTA-2Na mediated supramolecular self-assembly route: Enhanced visible-light-driven photocatalytic activity for antibiotic degradation. Appl. Surf. Sci. 2024, 669, 160501.
- 65.
Liu, Y.; Guo, X.; Chen, Z.; et al. Microwave-synthesis of g-C3N4 nanoribbons assembled seaweed-like architecture with enhanced photocatalytic property. Appl. Catal. B Environ. 2020, 266, 118624.
- 66.
Choudhary, P.; Kumar, A.; Krishnan, V. Nanoarchitectonics of phosphorylated graphitic carbon nitride for sustainable, selective and metal-free synthesis of primary amides. Chem. Eng. J. 2022, 431, 133695.
- 67.
Zheng, T.; Li, M.; Zhou, S.; et al. Gas exfoliation mechanisms of graphitic carbon nitride into few-layered nanosheets. J. Porous Mater. 2022, 29, 331–340.
- 68.
Attri, P.; Garg, P.; Sharma, P.; et al. Precursor-dependent fabrication of exfoliated graphitic carbon nitride (gCN) for enhanced photocatalytic and antimicrobial activity under visible light irradiation. J. Clean. Prod. 2023, 422, 138538.
- 69.
Cui, J.; Qi, D.; Wang, X. Research on the techniques of ultrasound-assisted liquid-phase peeling, thermal oxidation peeling and acid-base chemical peeling for ultra-thin graphite carbon nitride nanosheets. Ultrason. Sonochem. 2018, 48, 181–187.
- 70.
Zou, X.; Zhao, Y.; Li, M.; et al. Construction of graphitic carbon nitride nanosheets via an improved solvent exfoliation strategy and interfacial mechanics insight from molecular dynamics simulations. J. Porous Mater. 2021, 28, 943–954.
- 71.
Gowri, V.M.; Ajith, A.; John, S.A. Systematic study on morphological, electrochemical impedance, and electrocatalytic activity of graphitic carbon nitride modified on a glassy carbon substrate from sequential exfoliation in water. Langmuir 2021, 37, 10538–10546.
- 72.
Nguyen, M.D.; Nguyen, T.B.; Thamilselvan, A.; et al. Fabrication of visible-light-driven tubular F, P-codoped graphitic carbon nitride for enhanced photocatalytic degradation of tetracycline. J. Environ. Chem. Eng. 2022, 10, 106905.
- 73.
Yang, S.; Li, H.; Li, H.; et al. Rational design of 3D carbon nitrides assemblies with tunable nano-building blocks for efficient visible-light photocatalytic CO2 conversion. Appl. Catal. B Environ. 2022, 316, 121612.
- 74.
Lopes, P.P.; Stamenkovic, V.R. Past, present, and future of lead–acid batteries. Science 2020, 369, 923–924.
- 75.
Scrosati, B. History of lithium batteries. J. Solid State Electrochem. 2011, 15, 1623–1630.
- 76.
Tsais, P.-J.; Chan, L. Nickel-based batteries: Materials and chemistry. Electr. Transm. Distrib. Storage Syst. 2013, 309–397. https://doi.org/10.1533/9780857097378.3.309.
- 77.
Kurtulmuş, Z.N.; Karakaya, A. Review of lithium-ion, fuel cell, sodium-beta, nickel-based and metal-air battery technologies used in electric vehicles. Int. J. Energy Appl. Technol. 2023, 10, 103–113.
- 78.
Sato, Y.; Takeuchi, S.; Kobayakawa, K. Cause of the memory effect observed in alkaline secondary batteries using nickel electrode. J. Power Sources 2001, 93, 20–24.
- 79.
Arun, V.; Kannan, R.; Ramesh, S.; et al. Review on Li-Ion Battery vs Nickel Metal Hydride Battery in EV. Adv. Mater. Sci. Eng. 2022, 2022, 7910072.
- 80.
Shin, J.; Choi, J.W. Opportunities and reality of aqueous rechargeable batteries. Adv. Energy Mater. 2020, 10, 2001386.
- 81.
Zhang, X.; Lou, Z.; Gao, M.; et al. Metal Hydrides for Advanced Hydrogen/Lithium Storage and Ionic Conduction Applications. Acc. Mater. Res. 2024, 5, 371–384.
- 82.
Armand, M.; Axmann, P.; Bresser, D.; et al. Lithium-ion batteries–Current state of the art and anticipated developments. J. Power Sources 2020, 479, 228708.
- 83.
Jetybayeva, A.; Aaron, D.S.; Belharouak, I.; et al. Critical review on recently developed lithium and non-lithium anode-based solid-state lithium-ion batteries. J. Power Sources 2023, 566, 232914.
- 84.
Deng, H.; Aifantis, K.E. Applications of lithium batteries. Recharg. Ion Batter. Mater. Des. Appl. Li-Ion Cells Beyond 2023, 83–103. https://doi.org/10.1002/9783527836703.ch4.
- 85.
Michelini, E.; Höschele, P.; Ratz, F.; et al. Potential and most promising second-life applications for automotive lithium-ion batteries considering technical, economic and legal aspects. Energies 2023, 16, 2830.
- 86.
Stampatori, D.; Raimondi, P.P.; Noussan, M. Li-ion batteries: A review of a key technology for transport decarbonization. Energies 2020, 13, 2638.
- 87.
Bones, R.; Teagle, D.; Brooker, S.; et al. Development of a Ni, NiCl2 positive electrode for a liquid sodium (ZEBRA) battery cell. J. Electrochem. Soc. 1989, 136, 1274.
- 88.
Oshima, T.; Kajita, M.; Okuno, A. Development of sodium-sulfur batteries. Int. J. Appl. Ceram. Technol. 2004, 1, 269–276.
- 89.
Dustmann, C.-H. Advances in ZEBRA batteries. J. Power Sources 2004, 127, 85–92.
- 90.
Yang, H.; Zhang, Q.; Chen, M.; et al. Unveiling the origin of air stability in polyanion and layered-oxide cathode materials for sodium-ion batteries and their practical application considerations. Adv. Funct. Mater. 2024, 34, 2308257.
- 91.
Yabuuchi, N.; Kubota, K.; Dahbi, M.; et al. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.
- 92.
Perveen, T.; Siddiq, M.; Shahzad, N.; et al. Prospects in anode materials for sodium ion batteries-A review. Renew. Sustain. Energy Rev. 2020, 119, 109549.
- 93.
Jan, W.; Khan, A.D.; Iftikhar, F.J.; et al. Recent advancements and challenges in deploying lithium sulfur batteries as economical energy storage devices. J. Energy Storage 2023, 72, 108559.
- 94.
Prajapati, A.K.; Bhatnagar, A. A review on anode materials for lithium/sodium-ion batteries. J. Energy Chem. 2023, 83, 509–540.
- 95.
Chen, Y.; Wang, T.; Tian, H.; et al. Advances in lithium–sulfur batteries: From academic research to commercial viability. Adv. Mater. 2021, 33, 2003666.
- 96.
Chen, J.; Mao, Z.; Zhang, L.; et al. Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 2017, 11, 12650–12657.
- 97.
Li, D.; Liu, J.; Wang, W.; et al. Synthesis of porous N deficient graphitic carbon nitride and utilization in lithium-sulfur battery. Appl. Surf. Sci. 2021, 569, 151058.
- 98.
Liang, Y.; Zhao, C.Z.; Yuan, H.; et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1, 6–32.
- 99.
Kawahara, Y.; Sakabe, K.; Nakao, R.; et al. Development of status detection method of lithium-ion rechargeable battery for hybrid electric vehicles. J. Power Sources 2021, 481, 228760.
- 100.
Newaskar, D.; Patil, B. Batteries for Active Implantable Medical Devices. In Proceedings of the 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, 25–27 June 2021; pp. 1–7.
- 101.
Schipper, F.; Aurbach, D. A brief review: Past, present and future of lithium ion batteries. Russ. J. Electrochem. 2016, 52, 1095–1121.
- 102.
Zhao, L.; Zhang, T.; Li, W.; et al. Engineering of sodium-ion batteries: Opportunities and challenges. Engineering 2023, 24, 172–183.
- 103.
Asmare, M.; Zegeye, M.; Ketema, A. Advancement of electrically rechargeable metal-air batteries for future mobility. Energy Rep. 2024, 11, 1199–1211.
- 104.
Lv, Z.-C.; Wang, P.-F.; Wang, J.-C.; et al. Key challenges, recent advances and future perspectives of rechargeable lithium-sulfur batteries. J. Ind. Eng. Chem. 2023, 124, 68–88.
- 105.
Nakamura, N.; Ahn, S.; Momma, T.; et al. Future potential for lithium-sulfur batteries. J. Power Sources 2023, 558, 232566.
- 106.
Fichtner, M.; Edström, K.; Ayerbe, E.; et al. Rechargeable batteries of the future—The state of the art from a BATTERY 2030+ perspective. Adv. Energy Mater. 2022, 12, 2102904.
- 107.
Hasa, I.; Mariyappan, S.; Saurel, D.; et al. Challenges of today for Na-based batteries of the future: From materials to cell metrics. J. Power Sources 2021, 482, 228872.
- 108.
Ming, F.; Liang, H.; Huang, G.; et al. MXenes for rechargeable batteries beyond the lithium-ion. Adv. Mater. 2021, 33, 2004039.
- 109.
Tang, X.; Liu, C.; Wang, H.; et al. Pristine metal-organic frameworks for next-generation batteries. Coord. Chem. Rev. 2023, 494, 215361.
- 110.
Zhang, H.; Yang, Y.; Ren, D.; et al. Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Mater. 2021, 36, 147–170.
- 111.
Zhang, Z.; Fang, Z.; Xiang, Y.; et al. Cellulose-based material in lithium-sulfur batteries: A review. Carbohydr. Polym. 2021, 255, 117469.
- 112.
Li, S.; Fan, Z. Encapsulation methods of sulfur particles for lithium-sulfur batteries: A review. Energy Storage Mater. 2021, 34, 107–127.
- 113.
Fan, K.; Huang, H. Two-Dimensional Host Materials for Lithium-Sulfur Batteries: A Review and Perspective. Energy Storage Mater. 2022, 50, 696–717.
- 114.
Lai, Y.; Nie, H.; Xu, X.; et al. Interfacial Molecule Mediators in Cathodes for Advanced Li–S Batteries. ACS Appl. Mater. Interfaces 2019, 11, 29978–29984.
- 115.
Ponnada, S.; Kiai, M.S.; Gorle, D.B.; et al. History and recent developments in divergent electrolytes towards high-efficiency lithium–sulfur batteries–a review. Mater. Adv. 2021, 2, 4115–4139.
- 116.
Yang, L.; Li, Q.; Wang, Y.; et al. A review of cathode materials in lithium-sulfur batteries. Ionics 2020, 26, 5299–5318.
- 117.
Wang, J.; Han, W.Q. A review of heteroatom doped materials for advanced lithium–sulfur batteries. Adv. Funct. Mater. 2022, 32, 2107166.
- 118.
Liao, K.; Mao, P.; Li, N.; et al. Stabilization of polysulfides via lithium bonds for Li–S batteries. J. Mater. Chem. A 2016, 4, 5406–5409.
- 119.
Zhang, J.; Li, J.Y.; Wang, W.P.; et al. Microemulsion Assisted Assembly of 3D Porous S/Graphene@ g-C3N4 Hybrid Sponge as Free-Standing Cathodes for High Energy Density Li–S Batteries. Adv. Energy Mater. 2018, 8, 1702839.
- 120.
Du, M.; Tian, X.; Ran, R.; et al. Tuning nitrogen in graphitic carbon nitride enabling enhanced performance for polysulfide confinement in Li–S batteries. Energy Fuels 2020, 34, 11557–11564.
- 121.
Fan, C.-Y.; Yuan, H.-Y.; Li, H.-H.; et al. The effective design of a polysulfide-trapped separator at the molecular level for high energy density Li–S batteries. ACS Appl. Mater. Interfaces 2016, 8, 16108–16115.
- 122.
Ding, L.; Lu, Q.; Permana, A.D.C.; et al. Oxygen-Doped Carbon Nitride Tubes for Highly Stable Lithium–Sulfur Batteries. Energy Technol. 2021, 9, 2001057.
- 123.
Jun, Y.S.; Lee, E.Z.; Wang, X.; et al. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 2013, 23, 3661–3667.
- 124.
He, W.; He, X.; Du, M.; et al. Three-dimensional functionalized carbon nanotubes/graphitic carbon nitride hybrid composite as the sulfur host for high-performance lithium–sulfur batteries. J. Phys. Chem. C 2019, 123, 15924–15934.
- 125.
Hong, X.; Liu, Y.; Fu, J.; et al. A wheat flour derived hierarchical porous carbon/graphitic carbon nitride composite for high-performance lithium–sulfur batteries. Carbon 2020, 170, 119–126.
- 126.
Song, J.; Feng, S.; Zhu, C.; et al. Tuning the structure and composition of graphite-phase polymeric carbon nitride/reduced graphene oxide composites towards enhanced lithium-sulfur batteries performance. Electrochim. Acta 2017, 248, 541–546.
- 127.
He, F.; Li, K.; Yin, C.; et al. A combined theoretical and experimental study on the oxygenated graphitic carbon nitride as a promising sulfur host for lithium–sulfur batteries. J. Power Sources 2018, 373, 31–39.
- 128.
Ma, H.; Liu, X.; Liu, N.; et al. Defect-rich porous tubular graphitic carbon nitride with strong adsorption towards lithium polysulfides for high-performance lithium-sulfur batteries. J. Mater. Sci. Technol. 2022, 115, 140–147.
- 129.
Ma, H.; Song, C.; Liu, N.; et al. Nitrogen-Deficient Graphitic Carbon Nitride/Carbon Nanotube as Polysulfide Barrier of High-Performance Lithium-Sulfur Batteries. ChemElectroChem 2020, 7, 4906–4912.
- 130.
Li, C.; Gao, K.; Zhang, Z. Graphitic carbon nitride as polysulfide anchor and barrier for improved lithium–sulfur batteries. Nanotechnology 2018, 29, 465401.
- 131.
Chung, S.H.; Manthiram, A. Current status and future prospects of metal–sulfur batteries. Adv. Mater. 2019, 31, 1901125.
- 132.
Pan, Z.; Brett, D.J.; He, G.; et al. Progress and perspectives of organosulfur for lithium–sulfur batteries. Adv. Energy Mater. 2022, 12, 2103483.
- 133.
Zhao, X.; Wang, P.; Lv, E.; et al. Screening MXenes for novel anode material of lithium-ion batteries with high capacity and stability: A DFT calculation. Appl. Surf. Sci. 2021, 569, 151050.
- 134.
Goodenough, J.B.; Park, K.-S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.
- 135.
Deifallah, M.; McMillan, P.F.; Corà, F. Electronic and structural properties of two-dimensional carbon nitride graphenes. J. Phys. Chem. C 2008, 112, 5447–5453.
- 136.
Veith, G.M.; Baggetto, L.; Adamczyk, L.A.; et al. Electrochemical and solid-state lithiation of graphitic C3N4. Chem. Mater. 2013, 25, 503–508.
- 137.
Zhang, W.; Yin, J.; Chen, C.; et al. Carbon nitride derived nitrogen-doped carbon nanosheets for high-rate lithium-ion storage. Chem. Eng. Sci. 2021, 241, 116709.
- 138.
Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; et al. Application of graphene in energy storage device–A review. Renew. Sustain. Energy Rev. 2021, 135, 110026.
- 139.
Fang, S.; Bresser, D.; Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium-and sodium-ion batteries. Transit. Met. Oxides Electrochem. Energy Storage 2022, 55–99. https://doi.org/10.1002/9783527817252.ch4.
- 140.
Joshi, B.; Samuel, E.; Kim, T.-G.; et al. Supersonically spray-coated zinc ferrite/graphitic-carbon nitride composite as a stable high-capacity anode material for lithium-ion batteries. J. Alloys Compd. 2018, 768, 525–534.
- 141.
Tao, H.; Xiong, L.; Du, S.; et al. Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: An ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon 2017, 122, 54–63.
- 142.
Subramaniyam, C.M.; Deshmukh, K.A.; Tai, Z.; et al. 2D layered graphitic carbon nitride sandwiched with reduced graphene oxide as nanoarchitectured anode for highly stable lithium-ion battery. Electrochim. Acta 2017, 237, 69–77.
- 143.
Yuan, Z.; Hu, Z.; Gao, P.; et al. Graphitic carbon nitride-derived high lithium storage capacity graphite material with regular layer structure and the structural evolution mechanism. Electrochim. Acta 2022, 409, 139985.
- 144.
Dutta, D.P.; Pathak, D.D.; Abraham, S.; et al. An insight into the sodium-ion and lithium-ion storage properties of CuS/graphitic carbon nitride nanocomposite. RSC Adv. 2022, 12, 12383–12395.
- 145.
Li, Q.; Yang, D.; Chen, H.; et al. Advances in metal phosphides for sodium-ion batteries. SusMat 2021, 1, 359–392.
- 146.
Wang, J.; Yue, X.; Xie, Z.; et al. MOFs-derived transition metal sulfide composites for advanced sodium ion batteries. Energy Storage Mater. 2021, 41, 404–426.
- 147.
Tan, H.; Feng, Y.; Rui, X.; et al. Metal chalcogenides: Paving the way for high-performance sodium/potassium-ion batteries. Small Methods 2020, 4, 1900563.
- 148.
Karuppasamy, K.; Lin, J.; Vikraman, D.; et al. Towards greener energy storage: Brief insights into 3D printed anode materials for sodium-ion batteries. Curr. Opin. Electrochem. 2024, 45, 101482.
- 149.
Goikolea, E.; Palomares, V.; Wang, S.; et al. Na-ion batteries—Approaching old and new challenges. Adv. Energy Mater. 2020, 10, 2002055.
- 150.
Rudola, A.; Rennie, A.J.; Heap, R.; et al. Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem. A 2021, 9, 8279–8302.
- 151.
Das, H.T.; Babu, S.P.; Mondal, A.; et al. 2D-layered graphitic carbon nitride nanosheets for electrochemical energy storage applications. J. Power Sources 2024, 603, 234374.
- 152.
Haruna, A.; Dönmez, K.B.; Hooshmand, S.; et al. Harmony of nanosystems: Graphitic carbon nitride/carbon nanomaterial hybrid architectures for energy storage in supercapacitors and batteries. Carbon 2024, 226, 119177.
- 153.
Thomas, S.A.; Pallavolu, M.R.; Khan, M.E.; et al. Graphitic carbon nitride (g-C3N4): Futuristic material for rechargeable batteries. J. Energy Storage 2023, 68, 107673.
- 154.
Zhou, P.; Hou, L.; Song, T.; et al. Tuning N-species of graphitic carbon nitride for high-performance anode in sodium ion battery. ACS Appl. Energy Mater. 2022, 5, 9286–9291.
- 155.
Cha, W.; Kim, I.Y.; Lee, J.M.; et al. Sulfur-doped mesoporous carbon nitride with an ordered porous structure for sodium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 27192–27199.
- 156.
Wang, Y.; Li, H.; Di, S.; et al. Constructing long-cycling crystalline C3N4-based carbonaceous anodes for sodium-ion battery via N configuration control. Carbon Energy 2024, 6, e388.
- 157.
Zhou, Y.; Zhang, S.; Xu, J.; et al. Construction of MoS2-nitrogen-deficient graphitic carbon nitride anode toward high performance Sodium-ions batteries. Mater. Lett. 2020, 273, 127890.
- 158.
Yang, J.; Liu, Z.; Sheng, X.; et al. Tin nanoparticle in-situ decorated on nitrogen-deficient carbon nitride with excellent sodium storage performance. J. Colloid Interface Sci. 2022, 624, 40–50.
- 159.
Zhang, W.; Sun, M.; Yin, J.; et al. Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions. Nano Energy 2021, 87, 106184.
- 160.
Patel, A.; Gupta, H.; Singh, S.K.; et al. Superior cycling stability of saturated graphitic carbon nitride in hydrogel reduced graphene oxide anode for Sodium-ion battery. FlatChem 2022, 33, 100351.
- 161.
Weng, G.M.; Xie, Y.; Wang, H.; et al. A promising carbon/g-C3N4 composite negative electrode for a long-life sodium-ion battery. Angew. Chem. 2019, 131, 13865–13871.
- 162.
Song, J.; Maulana, A.Y.; Kim, H.; et al. N-doped Graphitic Carbon Coated Fe2O3 Using Dopamine as an Anode Material for Sodium-Ion Batteries. J. Alloys Compd. 2022, 921, 166082.
- 163.
Nazir, G.; Rehman, A.; Lee, J.-H.; et al. A Review of Rechargeable Zinc–Air Batteries: Recent Progress and Future Perspectives. Nano-Micro Lett. 2024, 16, 138.
- 164.
Bi, X.; Jiang, Y.; Chen, R.; et al. Rechargeable zinc–air versus lithium–air battery: From fundamental promises toward technological potentials. Adv. Energy Mater. 2024, 14, 2302388.
- 165.
Yu, H.; Lv, C.; Yan, C.; et al. Interface engineering for aqueous aluminum metal batteries: Current progresses and future prospects. Small Methods 2024, 8, 2300758.
- 166.
Wang, T.; Yang, T.; Luo, D.; et al. High-Energy-Density Solid-State Metal–Air Batteries: Progress, Challenges, and Perspectives. Small 2024, 20, 2309306.
- 167.
Cao, R.; Lee, J.S.; Liu, M.; et al. Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater. 2012, 2, 816–829.
- 168.
Liu, Q.; Pan, Z.; Wang, E.; et al. Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Mater. 2020, 27, 478–505.
- 169.
Li, T.; Huang, M.; Bai, X.; et al. Metal–air batteries: A review on current status and future applications. Prog. Nat. Sci. Mater. Int. 2023, 33, 151–171.
- 170.
Lyth, S.M.; Nabae, Y.; Islam, N.M.; et al. Electrochemical oxygen reduction on carbon nitride. ECS Trans. 2010, 28, 11.
- 171.
Gong, X.-F.; Zhang, Y.-L.; Zhao, L.; et al. Zinc/graphitic carbon nitride co-mediated dual-template synthesis of densely populated Fe–N x-embedded 2D carbon nanosheets towards oxygen reduction reactions for Zn–air batteries. J. Mater. Chem. A 2022, 10, 5971–5980.
- 172.
Tang, W.; Teng, K.; Guo, W.; et al. Defect-engineered Co3O4@ nitrogen-deficient graphitic carbon nitride as an efficient bifunctional electrocatalyst for high-performance metal-air batteries. Small 2022, 18, 2202194.
- 173.
Niu, W.; Marcus, K.; Zhou, L.; et al. Enhancing electron transfer and electrocatalytic activity on crystalline carbon-conjugated g-C3N4. ACS Catal. 2018, 8, 1926–1931.
- 174.
Shinde, S.S.; Lee, C.-H.; Sami, A.; et al. Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Acs Nano 2017, 11, 347–357.
- 175.
Kumar, S.; Jena, A.; Hu, Y.C.; et al. Cobalt diselenide nanorods grafted on graphitic carbon nitride: A synergistic catalyst for oxygen reactions in rechargeable Li− O2 batteries. ChemElectroChem 2018, 5, 29–35.
- 176.
Shinde, S.S.; Yu, J.-Y.; Song, J.-W.; et al. Highly active and durable carbon nitride fibers as metal-free bifunctional oxygen electrodes for flexible Zn–air batteries. Nanoscale Horiz. 2017, 2, 333–341.
- 177.
Wu, L.; Zhang, Y.; Shang, P.; et al. Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes. J. Mater. Chem. A 2021, 9, 27408–27414.
- 178.
Li, P.; Wang, H.; Tan, X.; et al. Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries. Appl. Catal. B Environ. 2022, 316, 121674.