2509001231
  • Open Access
  • Review

Graphitic Carbon Nitride, Synthesis Strategies, Characteristics and Application as an Electrode for Advanced Rechargeable Battery Systems

  • Qaisar Abbas 1, *,   
  • Pragati A. Shinde 2,   
  • Mohammad Ali Abdelkareem 3,   
  • Rizwan Raza 4,   
  • Abdul Ghani Olabi 3, *

Received: 25 Mar 2025 | Revised: 02 Sep 2025 | Accepted: 03 Sep 2025 | Published: 10 Sep 2025

Abstract

Electrochemical energy storage devices, particularly widely used rechargeable batteries, have attracted immense interest due to maturity in technology, ease of adaptability, technological diversity, superior energy density, high conversion efficiency and extensive accessibility of these systems. This has resulted in diversification of commercial applications of these devices ranging from portable consumer electronics to transportation. Less hazardous and abundant cell components are crucial for further broadening of their applicability for largescale applications such as grid-scale storage in a cost-effective and environmentally friendly manner. Electrode is a vital component of any battery systems and can significantly impact its performance. Therefore, it is imperative to investigate different electrode materials for leading rechargeable batteries. Key motivation of this study was to evaluate graphitic-C3N4 as a potential electrode material for advanced rechargeable battery systems since it is considered both cost-effective and environmentally friendly. Moreover, a two-dimensional layered structure of graphitic-C3N4 which is analogous of graphene has potential to enhance the energy storage performance of rechargeable batteries. During this study various synthesis strategies to produce graphitic-C3N4, with their advantages and disadvantages have been discussed. It’s application as an electrode material particularly for advanced/futuristic battery systems based on lithium-ion, lithium sulfur, sodium-ion and metal air batteries have also been covered comprehensively which makes this work rather distinctive. This study concluded that graphitic-C3N4 has immense potential to be an active material for battery systems. However, further work is required to optimize it’s structure, surface chemistry and hybridization with other promising active materials.

References 

  • 1.
    Olabi, A.G.; Abbas, Q.; Shinde, P.A.; et al. Rechargeable batteries: Technological advancement, challenges, current and emerging applications. Energy 2023, 266, 126408.
  • 2.
    Sarmah, S.; Lakhanlal; Kakati, B.K.; et al. Recent advancement in rechargeable battery technologies. Wiley Interdiscip. Rev. Energy Environ. 2023, 12, e461.
  • 3.
    Abbas, Q.; Mirzaeian, M.; Hunt, M.R.; et al. Current state and future prospects for electrochemical energy storage and conversion systems. Energies 2020, 13, 5847.
  • 4.
    Abbas, Q.; Khurshid, H.; Yoosuf, R.; et al. Engineering of nickel, cobalt oxides and nickel/cobalt binary oxides by electrodeposition and application as binder free electrodes in supercapacitors. Sci. Rep. 2023, 13, 15654.
  • 5.
    Mu, T.; Wang, Z.; Yao, N.; et al. Technological penetration and carbon-neutral evaluation of rechargeable battery systems for large-scale energy storage. J. Energy Storage 2023, 69, 107917.
  • 6.
    Patel, M.; Mishra, K.; Banerjee, R.; et al. Fundamentals, recent developments and prospects of lithium and non-lithium electrochemical rechargeable battery systems. J. Energy Chem. 2023, 81, 221–259.
  • 7.
    Khan, T.; Garg, A.K.; Gupta, A.; et al. Comprehensive review on latest advances on rechargeable batteries. J. Energy Storage 2023, 57, 106204.
  • 8.
    Singh, A.N.; Islam, M.; Meena, A.; et al. Unleashing the potential of sodium-ion batteries: Current state and future directions for sustainable energy storage. Adv. Funct. Mater. 2023, 33, 2304617.
  • 9.
    Yu, T.; Li, G.; Duan, Y.; et al. The research and industrialization progress and prospects of sodium ion battery. J. Alloys Compd. 2023, 958, 170486.
  • 10.
    Abu, S.M.; Hannan, M.; Lipu, M.H.; et al. State of the art of lithium-ion battery material potentials: An analytical evaluations, issues and future research directions. J. Clean. Prod. 2023, 394, 136246.
  • 11.
    Song, Z.; Ma, Y.; Cheng, X.; et al. Development of advanced anodes for solid-state lithium batteries. Mater. Today 2025, 88, 1005–1027.
  • 12.
    Huang, M.; Wang, X.; Liu, X.; et al. Fast ionic storage in aqueous rechargeable batteries: From fundamentals to applications. Adv. Mater. 2022, 34, 2105611.
  • 13.
    Ma, H.; Wang, F.; Shen, M.; et al. Advances of LiCoO2 in Cathode of Aqueous Lithium-Ion Batteries. Small Methods 2024, 8, 2300820.
  • 14.
    Xin, Y.-M.; Xu, H.-Y.; Ruan, J.-H.; et al. A Review on Application of LiFePO4 based composites as electrode materials for Lithium Ion Batteries. Int. J. Electrochem. Sci. 2021, 16, 210655.
  • 15.
    Guan, J.; Liu, M. Transport properties of LiMn2O4 electrode materials for lithium-ion batteries. Solid State Ion. 1998, 110, 21–28.
  • 16.
    Guo, F.; Hu, Z.; Xie, Y.; et al. Nanostructured LiNi0.8Co0.1Mn0.1O2 with a Hollow Morphology Boosting Cycling Stability as Cathode Materials for Lithium-Ion Batteries. ACS Appl. Nano Mater. 2024, 7, 15215–15222.
  • 17.
    Ma, L.; Liu, G.; Wang, Y.; et al. Preparation and Performance of Regenerated Al2O3-Coated Cathode Material LiNi0.8Co0.15Al0.05O2 from Spent Power Lithium-Ion Batteries. Molecules 2023, 28, 5165.
  • 18.
    Zhao, W.; Zhao, C.; Wu, H.; et al. Progress, challenge and perspective of graphite-based anode materials for lithium batteries: A review. J. Energy Storage 2024, 81, 110409.
  • 19.
    Iqbal, M.Z.; Zakar, S.; Khizar, A.; et al. Investigating the potential of transition metal sulfides as electrode material for energy storage applications. Appl. Phys. A 2024, 130, 541.
  • 20.
    Muthu, P.; Rajagopal, S.; Saju, D.; et al. Review of Transition Metal Chalcogenides and Halides as Electrode Materials for Thermal Batteries and Secondary Energy Storage Systems. ACS Omega 2024, 9, 7357–7374.
  • 21.
    AbdelHamid, A.A.; Mendoza-Garcia, A.; Lee, S.S.; et al. Metal oxide-and metal-loaded mesoporous carbon for practical high-performance Li-ion battery anodes. Nano Energy 2024, 119, 109025.
  • 22.
    Sun, Y.; Wu, Q.; Liang, X.; et al. Recent developments in carbon-based materials as high-rate anode for sodium ion batteries. Mater. Chem. Front. 2021, 5, 4089–4106.
  • 23.
    Zhai, H.; Xia, B.Y.; Park, H.S. Ti-based electrode materials for electrochemical sodium ion storage and removal. J. Mater. Chem. A 2019, 7, 22163–22188.
  • 24.
    Lee, M.; Kim, M.-S.; Oh, J.-M.; et al. Hybridization of layered titanium oxides and covalent organic nanosheets into hollow spheres for high-performance sodium-ion batteries with boosted electrical/ionic conductivity and ultralong cycle life. ACS Nano 2023, 17, 3019–3036.
  • 25.
    Fang, Y.; Luan, D.; Lou, X.W. Recent advances on mixed metal sulfides for advanced sodium-ion batteries. Adv. Mater. 2020, 32, 2002976.
  • 26.
    Gong, Y.; Li, Y.; Li, Y.; et al. Metal selenides anode materials for sodium ion batteries: Synthesis, modification, and application. Small 2023, 19, 2206194.
  • 27.
    Park, J.; Han, D.; Son, J.P.; et al. Extending the Electrochemical Window of Na+ Halide Nanocomposite Solid Electrolytes for 5 V-Class All-Solid-State Na-Ion Batteries. ACS Energy Lett. 2024, 9, 2222–2230.
  • 28.
    Gupta, Y.; Siwatch, P.; Karwasra, R.; et al. Transition metal oxides as the electrode material for sodium-ion capacitors. Nanofabrication 2023, 8, 1–16.
  • 29.
    He, L.; Guo, J.; Liu, S.; et al. Progress of metal phosphides as the anode materials for sodium ion batteries. J. Alloys Compd. 2024, 997, 174924.
  • 30.
    Madhuri, A.; Jena, S.; Swain, B.P. Transition Metal Nitrides as Energy Storage Materials. In Energy Materials: Structure, Properties and Applications; Springer: Singapore, 2023; pp. 57–75.
  • 31.
    Pan, Z.; Chen, H.; Zeng, Y.; et al. Fluorine Chemistry in Lithium-Ion and Sodium-Ion Batteries; OAE Publishing Inc.: Alhambra, CA, USA, 2023.
  • 32.
    Wei, X.; Wang, X.; Tan, X.; et al. Nanostructured conversion-type negative electrode materials for low-cost and high-performance sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1804458.
  • 33.
    Huang, Y.; Zheng, Y.; Li, X.; et al. Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 2018, 3, 1604–1612.
  • 34.
    Ma, Y.; Ma, Y.; Bresser, D.; et al. Cobalt disulfide nanoparticles embedded in porous carbonaceous micro-polyhedrons interlinked by carbon nanotubes for superior lithium and sodium storage. ACS Nano 2018, 12, 7220–7231.
  • 35.
    Song, Z.; Ma, Y.; Wang, K.; et al. Zinc-regulated hard carbon as a sodium-ion battery anode material. J. Power Sources 2025, 640, 236798.
  • 36.
    Wang, J.; Wu, P.; Wang, K.; et al. Composite (bi-) metallic oxides with heterostructure and heteroatom-doped porous carbon as advanced potassium-ion battery anodes. Batter. Supercaps 2025, 8, e202400779.
  • 37.
    Li, P.; Shen, Y.; Li, X.; et al. Fullerene-intercalated graphitic carbon nitride as a high-performance anode material for sodium-ion batteries. Energy Environ. Mater. 2022, 5, 608–616.
  • 38.
    Hankel, M.; Ye, D.; Wang, L.; et al. Lithium and sodium storage on graphitic carbon nitride. J. Phys. Chem. C 2015, 119, 21921–21927.
  • 39.
    Gope, S.; Malunavar, S.; Bhattacharyya, A.J. Li–Ion-Conducting Pillar-Like Graphitic Carbon Nitrides as Novel Anodes for Li–Ion Batteries. ChemistrySelect 2018, 3, 5364–5376.
  • 40.
    Liu, D.; Zhang, C.; Zhou, G.; et al. Catalytic effects in lithium–sulfur batteries: Promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018, 5, 1700270.
  • 41.
    Li, Y.; Li, X.; Zhang, H.; et al. Porous graphitic carbon nitride for solar photocatalytic applications. Nanoscale Horiz. 2020, 5, 765–786.
  • 42.
    Wang, L.; Wang, K.; He, T.; et al. Graphitic carbon nitride-based photocatalytic materials: Preparation strategy and application. ACS Sustain. Chem. Eng. 2020, 8, 16048–16085.
  • 43.
    Vaya, D.; Kaushik, B.; Surolia, P.K. Recent advances in graphitic carbon nitride semiconductor: Structure, synthesis and applications. Mater. Sci. Semicond. Process. 2022, 137, 106181.
  • 44.
    Liang, Q.; Shao, B.; Tong, S.; et al. Recent advances of melamine self-assembled graphitic carbon nitride-based materials: Design, synthesis and application in energy and environment. Chem. Eng. J. 2021, 405, 126951.
  • 45.
    Lu, C.; Chen, X. Nanostructure engineering of graphitic carbon nitride for electrochemical applications. ACS Nano 2021, 15, 18777–18793.
  • 46.
    Ni, Y.; Wang, R.; Zhang, W.; et al. Graphitic carbon nitride (g-C3N4)-based nanostructured materials for photodynamic inactivation: Synthesis, efficacy and mechanism. Chem. Eng. J. 2021, 404, 126528.
  • 47.
    Gao, X.; Li, Q.-Y.; Wang, Y.-L.; et al. A facile soft-hard template cooperative organization approach for mesoporous g-C3N4 with high photocatalytic performance. Appl. Surf. Sci. 2024, 657, 159574.
  • 48.
    Obregón, S. Exploring nanoengineering strategies for the preparation of graphitic carbon nitride nanostructures. FlatChem 2023, 38, 100473.
  • 49.
    Zeng, Y.; Zhan, X.; Li, H.; et al. Bottom-to-Up synthesis of functional carbon nitride polymer: Design principles, controlled synthesis and applications. Eur. Polym. J. 2023, 182, 111734.
  • 50.
    Groenewolt, M.; Antonietti, M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices. Adv. Mater. 2005, 17, 1789–1792.
  • 51.
    Gao, R.; Liao, Q.; Sun, F.; et al. Mesoporous graphitic carbon nitride for photocatalytic coenzyme regeneration. Microporous Mesoporous Mater. 2024, 365, 112890.
  • 52.
    Bu, L.; Xie, Q.; Ming, H. Gold nanoparticles decorated three-dimensional porous graphitic carbon nitrides for sensitive anodic stripping voltammetric analysis of trace arsenic (III). J. Alloys Compd. 2020, 823, 153723.
  • 53.
    Ajiboye, T.O.; Kuvarega, A.T.; Onwudiwe, D.C. Graphitic carbon nitride-based catalysts and their applications: A review. Nano-Struct. Nano-Objects 2020, 24, 100577.
  • 54.
    Xu, Z.; Kong, L.; Wang, H.; et al. Soft-template assisted preparation of hierarchically porous graphitic carbon nitride layers for high-performance supercapacitors. J. Appl. Polym. Sci. 2022, 139, e52947.
  • 55.
    Antil, B.; Deka, S. Porous Graphitic Carbon Nitride Nanostructures and Their Application in Photocatalytic Hydrogen Evolution Reaction. Heterog. Nanocatalysis Energy Environ. Sustain. 2022, 1, 133–163.
  • 56.
    Wang, H.; Liu, Y.; Kong, L.; et al. Porous graphitic carbon nitride nanosheets with three-dimensional interconnected network as electrode for supercapacitors. J. Energy Storage 2023, 63, 106935.
  • 57.
    Li, H.; Wang, L.; Liu, Y.; et al. Mesoporous graphitic carbon nitride materials: Synthesis and modifications. Res. Chem. Intermed. 2016, 42, 3979–3998.
  • 58.
    Umekar, M.S.; Bhusari, G.S.; Bhoyar, T.; et al. Graphitic carbon nitride-based photocatalysts for environmental remediation of organic pollutants. Curr. Nanosci. 2023, 19, 148–169.
  • 59.
    Nazir, A.; Huo, P.; Rasool, A.T. Recent advances on graphitic carbon nitride-based S-scheme photocatalysts: Synthesis, environmental applications, and challenges. J. Organomet. Chem. 2023, 1004, 122951.
  • 60.
    Kailasam, K.; Epping, J.D.; Thomas, A.; et al. Mesoporous carbon nitride–silica composites by a combined sol–gel/thermal condensation approach and their application as photocatalysts. Energy Environ. Sci. 2011, 4, 4668–4674.
  • 61.
    Dharani, S.; Gnanasekaran, L.; Arunachalam, S.; et al. Photodegrading Rhodamine B dye with cobalt ferrite-graphitic carbon nitride (CoFe2O4/g-C3N4) composite. Environ. Res. 2024, 258, 119484.
  • 62.
    Dharmarajan, N.P.; Vidyasagar, D.; Yang, J.H.; et al. Bio-inspired supramolecular self-assembled carbon nitride nanostructures for photocatalytic water splitting. Adv. Mater. 2024, 36, 2306895.
  • 63.
    Asrami, M.R.; Jourshabani, M.; Park, M.H.; et al. A unique and well-designed 2D graphitic carbon nitride with sponge-like architecture for enhanced visible-light photocatalytic activity. J. Mater. Sci. Technol. 2023, 159, 99–111.
  • 64.
    Shao, S.; Liu, X.; Wang, R.; et al. Morphologic and microstructural modulation of graphitic carbon nitride through EDTA-2Na mediated supramolecular self-assembly route: Enhanced visible-light-driven photocatalytic activity for antibiotic degradation. Appl. Surf. Sci. 2024, 669, 160501.
  • 65.
    Liu, Y.; Guo, X.; Chen, Z.; et al. Microwave-synthesis of g-C3N4 nanoribbons assembled seaweed-like architecture with enhanced photocatalytic property. Appl. Catal. B Environ. 2020, 266, 118624.
  • 66.
    Choudhary, P.; Kumar, A.; Krishnan, V. Nanoarchitectonics of phosphorylated graphitic carbon nitride for sustainable, selective and metal-free synthesis of primary amides. Chem. Eng. J. 2022, 431, 133695.
  • 67.
    Zheng, T.; Li, M.; Zhou, S.; et al. Gas exfoliation mechanisms of graphitic carbon nitride into few-layered nanosheets. J. Porous Mater. 2022, 29, 331–340.
  • 68.
    Attri, P.; Garg, P.; Sharma, P.; et al. Precursor-dependent fabrication of exfoliated graphitic carbon nitride (gCN) for enhanced photocatalytic and antimicrobial activity under visible light irradiation. J. Clean. Prod. 2023, 422, 138538.
  • 69.
    Cui, J.; Qi, D.; Wang, X. Research on the techniques of ultrasound-assisted liquid-phase peeling, thermal oxidation peeling and acid-base chemical peeling for ultra-thin graphite carbon nitride nanosheets. Ultrason. Sonochem. 2018, 48, 181–187.
  • 70.
    Zou, X.; Zhao, Y.; Li, M.; et al. Construction of graphitic carbon nitride nanosheets via an improved solvent exfoliation strategy and interfacial mechanics insight from molecular dynamics simulations. J. Porous Mater. 2021, 28, 943–954.
  • 71.
    Gowri, V.M.; Ajith, A.; John, S.A. Systematic study on morphological, electrochemical impedance, and electrocatalytic activity of graphitic carbon nitride modified on a glassy carbon substrate from sequential exfoliation in water. Langmuir 2021, 37, 10538–10546.
  • 72.
    Nguyen, M.D.; Nguyen, T.B.; Thamilselvan, A.; et al. Fabrication of visible-light-driven tubular F, P-codoped graphitic carbon nitride for enhanced photocatalytic degradation of tetracycline. J. Environ. Chem. Eng. 2022, 10, 106905.
  • 73.
    Yang, S.; Li, H.; Li, H.; et al. Rational design of 3D carbon nitrides assemblies with tunable nano-building blocks for efficient visible-light photocatalytic CO2 conversion. Appl. Catal. B Environ. 2022, 316, 121612.
  • 74.
    Lopes, P.P.; Stamenkovic, V.R. Past, present, and future of lead–acid batteries. Science 2020, 369, 923–924.
  • 75.
    Scrosati, B. History of lithium batteries. J. Solid State Electrochem. 2011, 15, 1623–1630.
  • 76.
    Tsais, P.-J.; Chan, L. Nickel-based batteries: Materials and chemistry. Electr. Transm. Distrib. Storage Syst. 2013, 309–397. https://doi.org/10.1533/9780857097378.3.309.
  • 77.
    Kurtulmuş, Z.N.; Karakaya, A. Review of lithium-ion, fuel cell, sodium-beta, nickel-based and metal-air battery technologies used in electric vehicles. Int. J. Energy Appl. Technol. 2023, 10, 103–113.
  • 78.
    Sato, Y.; Takeuchi, S.; Kobayakawa, K. Cause of the memory effect observed in alkaline secondary batteries using nickel electrode. J. Power Sources 2001, 93, 20–24.
  • 79.
    Arun, V.; Kannan, R.; Ramesh, S.; et al. Review on Li-Ion Battery vs Nickel Metal Hydride Battery in EV. Adv. Mater. Sci. Eng. 2022, 2022, 7910072.
  • 80.
    Shin, J.; Choi, J.W. Opportunities and reality of aqueous rechargeable batteries. Adv. Energy Mater. 2020, 10, 2001386.
  • 81.
    Zhang, X.; Lou, Z.; Gao, M.; et al. Metal Hydrides for Advanced Hydrogen/Lithium Storage and Ionic Conduction Applications. Acc. Mater. Res. 2024, 5, 371–384.
  • 82.
    Armand, M.; Axmann, P.; Bresser, D.; et al. Lithium-ion batteries–Current state of the art and anticipated developments. J. Power Sources 2020, 479, 228708.
  • 83.
    Jetybayeva, A.; Aaron, D.S.; Belharouak, I.; et al. Critical review on recently developed lithium and non-lithium anode-based solid-state lithium-ion batteries. J. Power Sources 2023, 566, 232914.
  • 84.
    Deng, H.; Aifantis, K.E. Applications of lithium batteries. Recharg. Ion Batter. Mater. Des. Appl. Li-Ion Cells Beyond 2023, 83–103. https://doi.org/10.1002/9783527836703.ch4.
  • 85.
    Michelini, E.; Höschele, P.; Ratz, F.; et al. Potential and most promising second-life applications for automotive lithium-ion batteries considering technical, economic and legal aspects. Energies 2023, 16, 2830.
  • 86.
    Stampatori, D.; Raimondi, P.P.; Noussan, M. Li-ion batteries: A review of a key technology for transport decarbonization. Energies 2020, 13, 2638.
  • 87.
    Bones, R.; Teagle, D.; Brooker, S.; et al. Development of a Ni, NiCl2 positive electrode for a liquid sodium (ZEBRA) battery cell. J. Electrochem. Soc. 1989, 136, 1274.
  • 88.
    Oshima, T.; Kajita, M.; Okuno, A. Development of sodium-sulfur batteries. Int. J. Appl. Ceram. Technol. 2004, 1, 269–276.
  • 89.
    Dustmann, C.-H. Advances in ZEBRA batteries. J. Power Sources 2004, 127, 85–92.
  • 90.
    Yang, H.; Zhang, Q.; Chen, M.; et al. Unveiling the origin of air stability in polyanion and layered-oxide cathode materials for sodium-ion batteries and their practical application considerations. Adv. Funct. Mater. 2024, 34, 2308257.
  • 91.
    Yabuuchi, N.; Kubota, K.; Dahbi, M.; et al. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.
  • 92.
    Perveen, T.; Siddiq, M.; Shahzad, N.; et al. Prospects in anode materials for sodium ion batteries-A review. Renew. Sustain. Energy Rev. 2020, 119, 109549.
  • 93.
    Jan, W.; Khan, A.D.; Iftikhar, F.J.; et al. Recent advancements and challenges in deploying lithium sulfur batteries as economical energy storage devices. J. Energy Storage 2023, 72, 108559.
  • 94.
    Prajapati, A.K.; Bhatnagar, A. A review on anode materials for lithium/sodium-ion batteries. J. Energy Chem. 2023, 83, 509–540.
  • 95.
    Chen, Y.; Wang, T.; Tian, H.; et al. Advances in lithium–sulfur batteries: From academic research to commercial viability. Adv. Mater. 2021, 33, 2003666.
  • 96.
    Chen, J.; Mao, Z.; Zhang, L.; et al. Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 2017, 11, 12650–12657.
  • 97.
    Li, D.; Liu, J.; Wang, W.; et al. Synthesis of porous N deficient graphitic carbon nitride and utilization in lithium-sulfur battery. Appl. Surf. Sci. 2021, 569, 151058.
  • 98.
    Liang, Y.; Zhao, C.Z.; Yuan, H.; et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1, 6–32.
  • 99.
    Kawahara, Y.; Sakabe, K.; Nakao, R.; et al. Development of status detection method of lithium-ion rechargeable battery for hybrid electric vehicles. J. Power Sources 2021, 481, 228760.
  • 100.
    Newaskar, D.; Patil, B. Batteries for Active Implantable Medical Devices. In Proceedings of the 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India, 25–27 June 2021; pp. 1–7.
  • 101.
    Schipper, F.; Aurbach, D. A brief review: Past, present and future of lithium ion batteries. Russ. J. Electrochem. 2016, 52, 1095–1121.
  • 102.
    Zhao, L.; Zhang, T.; Li, W.; et al. Engineering of sodium-ion batteries: Opportunities and challenges. Engineering 2023, 24, 172–183.
  • 103.
    Asmare, M.; Zegeye, M.; Ketema, A. Advancement of electrically rechargeable metal-air batteries for future mobility. Energy Rep. 2024, 11, 1199–1211.
  • 104.
    Lv, Z.-C.; Wang, P.-F.; Wang, J.-C.; et al. Key challenges, recent advances and future perspectives of rechargeable lithium-sulfur batteries. J. Ind. Eng. Chem. 2023, 124, 68–88.
  • 105.
    Nakamura, N.; Ahn, S.; Momma, T.; et al. Future potential for lithium-sulfur batteries. J. Power Sources 2023, 558, 232566.
  • 106.
    Fichtner, M.; Edström, K.; Ayerbe, E.; et al. Rechargeable batteries of the future—The state of the art from a BATTERY 2030+ perspective. Adv. Energy Mater. 2022, 12, 2102904.
  • 107.
    Hasa, I.; Mariyappan, S.; Saurel, D.; et al. Challenges of today for Na-based batteries of the future: From materials to cell metrics. J. Power Sources 2021, 482, 228872.
  • 108.
    Ming, F.; Liang, H.; Huang, G.; et al. MXenes for rechargeable batteries beyond the lithium-ion. Adv. Mater. 2021, 33, 2004039.
  • 109.
    Tang, X.; Liu, C.; Wang, H.; et al. Pristine metal-organic frameworks for next-generation batteries. Coord. Chem. Rev. 2023, 494, 215361.
  • 110.
    Zhang, H.; Yang, Y.; Ren, D.; et al. Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Mater. 2021, 36, 147–170.
  • 111.
    Zhang, Z.; Fang, Z.; Xiang, Y.; et al. Cellulose-based material in lithium-sulfur batteries: A review. Carbohydr. Polym. 2021, 255, 117469.
  • 112.
    Li, S.; Fan, Z. Encapsulation methods of sulfur particles for lithium-sulfur batteries: A review. Energy Storage Mater. 2021, 34, 107–127.
  • 113.
    Fan, K.; Huang, H. Two-Dimensional Host Materials for Lithium-Sulfur Batteries: A Review and Perspective. Energy Storage Mater. 2022, 50, 696–717.
  • 114.
    Lai, Y.; Nie, H.; Xu, X.; et al. Interfacial Molecule Mediators in Cathodes for Advanced Li–S Batteries. ACS Appl. Mater. Interfaces 2019, 11, 29978–29984.
  • 115.
    Ponnada, S.; Kiai, M.S.; Gorle, D.B.; et al. History and recent developments in divergent electrolytes towards high-efficiency lithium–sulfur batteries–a review. Mater. Adv. 2021, 2, 4115–4139.
  • 116.
    Yang, L.; Li, Q.; Wang, Y.; et al. A review of cathode materials in lithium-sulfur batteries. Ionics 2020, 26, 5299–5318.
  • 117.
    Wang, J.; Han, W.Q. A review of heteroatom doped materials for advanced lithium–sulfur batteries. Adv. Funct. Mater. 2022, 32, 2107166.
  • 118.
    Liao, K.; Mao, P.; Li, N.; et al. Stabilization of polysulfides via lithium bonds for Li–S batteries. J. Mater. Chem. A 2016, 4, 5406–5409.
  • 119.
    Zhang, J.; Li, J.Y.; Wang, W.P.; et al. Microemulsion Assisted Assembly of 3D Porous S/Graphene@ g-C3N4 Hybrid Sponge as Free-Standing Cathodes for High Energy Density Li–S Batteries. Adv. Energy Mater. 2018, 8, 1702839.
  • 120.
    Du, M.; Tian, X.; Ran, R.; et al. Tuning nitrogen in graphitic carbon nitride enabling enhanced performance for polysulfide confinement in Li–S batteries. Energy Fuels 2020, 34, 11557–11564.
  • 121.
    Fan, C.-Y.; Yuan, H.-Y.; Li, H.-H.; et al. The effective design of a polysulfide-trapped separator at the molecular level for high energy density Li–S batteries. ACS Appl. Mater. Interfaces 2016, 8, 16108–16115.
  • 122.
    Ding, L.; Lu, Q.; Permana, A.D.C.; et al. Oxygen-Doped Carbon Nitride Tubes for Highly Stable Lithium–Sulfur Batteries. Energy Technol. 2021, 9, 2001057.
  • 123.
    Jun, Y.S.; Lee, E.Z.; Wang, X.; et al. From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv. Funct. Mater. 2013, 23, 3661–3667.
  • 124.
    He, W.; He, X.; Du, M.; et al. Three-dimensional functionalized carbon nanotubes/graphitic carbon nitride hybrid composite as the sulfur host for high-performance lithium–sulfur batteries. J. Phys. Chem. C 2019, 123, 15924–15934.
  • 125.
    Hong, X.; Liu, Y.; Fu, J.; et al. A wheat flour derived hierarchical porous carbon/graphitic carbon nitride composite for high-performance lithium–sulfur batteries. Carbon 2020, 170, 119–126.
  • 126.
    Song, J.; Feng, S.; Zhu, C.; et al. Tuning the structure and composition of graphite-phase polymeric carbon nitride/reduced graphene oxide composites towards enhanced lithium-sulfur batteries performance. Electrochim. Acta 2017, 248, 541–546.
  • 127.
    He, F.; Li, K.; Yin, C.; et al. A combined theoretical and experimental study on the oxygenated graphitic carbon nitride as a promising sulfur host for lithium–sulfur batteries. J. Power Sources 2018, 373, 31–39.
  • 128.
    Ma, H.; Liu, X.; Liu, N.; et al. Defect-rich porous tubular graphitic carbon nitride with strong adsorption towards lithium polysulfides for high-performance lithium-sulfur batteries. J. Mater. Sci. Technol. 2022, 115, 140–147.
  • 129.
    Ma, H.; Song, C.; Liu, N.; et al. Nitrogen-Deficient Graphitic Carbon Nitride/Carbon Nanotube as Polysulfide Barrier of High-Performance Lithium-Sulfur Batteries. ChemElectroChem 2020, 7, 4906–4912.
  • 130.
    Li, C.; Gao, K.; Zhang, Z. Graphitic carbon nitride as polysulfide anchor and barrier for improved lithium–sulfur batteries. Nanotechnology 2018, 29, 465401.
  • 131.
    Chung, S.H.; Manthiram, A. Current status and future prospects of metal–sulfur batteries. Adv. Mater. 2019, 31, 1901125.
  • 132.
    Pan, Z.; Brett, D.J.; He, G.; et al. Progress and perspectives of organosulfur for lithium–sulfur batteries. Adv. Energy Mater. 2022, 12, 2103483.
  • 133.
    Zhao, X.; Wang, P.; Lv, E.; et al. Screening MXenes for novel anode material of lithium-ion batteries with high capacity and stability: A DFT calculation. Appl. Surf. Sci. 2021, 569, 151050.
  • 134.
    Goodenough, J.B.; Park, K.-S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.
  • 135.
    Deifallah, M.; McMillan, P.F.; Corà, F. Electronic and structural properties of two-dimensional carbon nitride graphenes. J. Phys. Chem. C 2008, 112, 5447–5453.
  • 136.
    Veith, G.M.; Baggetto, L.; Adamczyk, L.A.; et al. Electrochemical and solid-state lithiation of graphitic C3N4. Chem. Mater. 2013, 25, 503–508.
  • 137.
    Zhang, W.; Yin, J.; Chen, C.; et al. Carbon nitride derived nitrogen-doped carbon nanosheets for high-rate lithium-ion storage. Chem. Eng. Sci. 2021, 241, 116709.
  • 138.
    Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; et al. Application of graphene in energy storage device–A review. Renew. Sustain. Energy Rev. 2021, 135, 110026.
  • 139.
    Fang, S.; Bresser, D.; Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium-and sodium-ion batteries. Transit. Met. Oxides Electrochem. Energy Storage 2022, 55–99. https://doi.org/10.1002/9783527817252.ch4.
  • 140.
    Joshi, B.; Samuel, E.; Kim, T.-G.; et al. Supersonically spray-coated zinc ferrite/graphitic-carbon nitride composite as a stable high-capacity anode material for lithium-ion batteries. J. Alloys Compd. 2018, 768, 525–534.
  • 141.
    Tao, H.; Xiong, L.; Du, S.; et al. Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: An ultrahigh capacity and rate anode for Li and Na ion batteries. Carbon 2017, 122, 54–63.
  • 142.
    Subramaniyam, C.M.; Deshmukh, K.A.; Tai, Z.; et al. 2D layered graphitic carbon nitride sandwiched with reduced graphene oxide as nanoarchitectured anode for highly stable lithium-ion battery. Electrochim. Acta 2017, 237, 69–77.
  • 143.
    Yuan, Z.; Hu, Z.; Gao, P.; et al. Graphitic carbon nitride-derived high lithium storage capacity graphite material with regular layer structure and the structural evolution mechanism. Electrochim. Acta 2022, 409, 139985.
  • 144.
    Dutta, D.P.; Pathak, D.D.; Abraham, S.; et al. An insight into the sodium-ion and lithium-ion storage properties of CuS/graphitic carbon nitride nanocomposite. RSC Adv. 2022, 12, 12383–12395.
  • 145.
    Li, Q.; Yang, D.; Chen, H.; et al. Advances in metal phosphides for sodium-ion batteries. SusMat 2021, 1, 359–392.
  • 146.
    Wang, J.; Yue, X.; Xie, Z.; et al. MOFs-derived transition metal sulfide composites for advanced sodium ion batteries. Energy Storage Mater. 2021, 41, 404–426.
  • 147.
    Tan, H.; Feng, Y.; Rui, X.; et al. Metal chalcogenides: Paving the way for high-performance sodium/potassium-ion batteries. Small Methods 2020, 4, 1900563.
  • 148.
    Karuppasamy, K.; Lin, J.; Vikraman, D.; et al. Towards greener energy storage: Brief insights into 3D printed anode materials for sodium-ion batteries. Curr. Opin. Electrochem. 2024, 45, 101482.
  • 149.
    Goikolea, E.; Palomares, V.; Wang, S.; et al. Na-ion batteries—Approaching old and new challenges. Adv. Energy Mater. 2020, 10, 2002055.
  • 150.
    Rudola, A.; Rennie, A.J.; Heap, R.; et al. Commercialisation of high energy density sodium-ion batteries: Faradion’s journey and outlook. J. Mater. Chem. A 2021, 9, 8279–8302.
  • 151.
    Das, H.T.; Babu, S.P.; Mondal, A.; et al. 2D-layered graphitic carbon nitride nanosheets for electrochemical energy storage applications. J. Power Sources 2024, 603, 234374.
  • 152.
    Haruna, A.; Dönmez, K.B.; Hooshmand, S.; et al. Harmony of nanosystems: Graphitic carbon nitride/carbon nanomaterial hybrid architectures for energy storage in supercapacitors and batteries. Carbon 2024, 226, 119177.
  • 153.
    Thomas, S.A.; Pallavolu, M.R.; Khan, M.E.; et al. Graphitic carbon nitride (g-C3N4): Futuristic material for rechargeable batteries. J. Energy Storage 2023, 68, 107673.
  • 154.
    Zhou, P.; Hou, L.; Song, T.; et al. Tuning N-species of graphitic carbon nitride for high-performance anode in sodium ion battery. ACS Appl. Energy Mater. 2022, 5, 9286–9291.
  • 155.
    Cha, W.; Kim, I.Y.; Lee, J.M.; et al. Sulfur-doped mesoporous carbon nitride with an ordered porous structure for sodium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 27192–27199.
  • 156.
    Wang, Y.; Li, H.; Di, S.; et al. Constructing long-cycling crystalline C3N4-based carbonaceous anodes for sodium-ion battery via N configuration control. Carbon Energy 2024, 6, e388.
  • 157.
    Zhou, Y.; Zhang, S.; Xu, J.; et al. Construction of MoS2-nitrogen-deficient graphitic carbon nitride anode toward high performance Sodium-ions batteries. Mater. Lett. 2020, 273, 127890.
  • 158.
    Yang, J.; Liu, Z.; Sheng, X.; et al. Tin nanoparticle in-situ decorated on nitrogen-deficient carbon nitride with excellent sodium storage performance. J. Colloid Interface Sci. 2022, 624, 40–50.
  • 159.
    Zhang, W.; Sun, M.; Yin, J.; et al. Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions. Nano Energy 2021, 87, 106184.
  • 160.
    Patel, A.; Gupta, H.; Singh, S.K.; et al. Superior cycling stability of saturated graphitic carbon nitride in hydrogel reduced graphene oxide anode for Sodium-ion battery. FlatChem 2022, 33, 100351.
  • 161.
    Weng, G.M.; Xie, Y.; Wang, H.; et al. A promising carbon/g-C3N4 composite negative electrode for a long-life sodium-ion battery. Angew. Chem. 2019, 131, 13865–13871.
  • 162.
    Song, J.; Maulana, A.Y.; Kim, H.; et al. N-doped Graphitic Carbon Coated Fe2O3 Using Dopamine as an Anode Material for Sodium-Ion Batteries. J. Alloys Compd. 2022, 921, 166082.
  • 163.
    Nazir, G.; Rehman, A.; Lee, J.-H.; et al. A Review of Rechargeable Zinc–Air Batteries: Recent Progress and Future Perspectives. Nano-Micro Lett. 2024, 16, 138.
  • 164.
    Bi, X.; Jiang, Y.; Chen, R.; et al. Rechargeable zinc–air versus lithium–air battery: From fundamental promises toward technological potentials. Adv. Energy Mater. 2024, 14, 2302388.
  • 165.
    Yu, H.; Lv, C.; Yan, C.; et al. Interface engineering for aqueous aluminum metal batteries: Current progresses and future prospects. Small Methods 2024, 8, 2300758.
  • 166.
    Wang, T.; Yang, T.; Luo, D.; et al. High-Energy-Density Solid-State Metal–Air Batteries: Progress, Challenges, and Perspectives. Small 2024, 20, 2309306.
  • 167.
    Cao, R.; Lee, J.S.; Liu, M.; et al. Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater. 2012, 2, 816–829.
  • 168.
    Liu, Q.; Pan, Z.; Wang, E.; et al. Aqueous metal-air batteries: Fundamentals and applications. Energy Storage Mater. 2020, 27, 478–505.
  • 169.
    Li, T.; Huang, M.; Bai, X.; et al. Metal–air batteries: A review on current status and future applications. Prog. Nat. Sci. Mater. Int. 2023, 33, 151–171.
  • 170.
    Lyth, S.M.; Nabae, Y.; Islam, N.M.; et al. Electrochemical oxygen reduction on carbon nitride. ECS Trans. 2010, 28, 11.
  • 171.
    Gong, X.-F.; Zhang, Y.-L.; Zhao, L.; et al. Zinc/graphitic carbon nitride co-mediated dual-template synthesis of densely populated Fe–N x-embedded 2D carbon nanosheets towards oxygen reduction reactions for Zn–air batteries. J. Mater. Chem. A 2022, 10, 5971–5980.
  • 172.
    Tang, W.; Teng, K.; Guo, W.; et al. Defect-engineered Co3O4@ nitrogen-deficient graphitic carbon nitride as an efficient bifunctional electrocatalyst for high-performance metal-air batteries. Small 2022, 18, 2202194.
  • 173.
    Niu, W.; Marcus, K.; Zhou, L.; et al. Enhancing electron transfer and electrocatalytic activity on crystalline carbon-conjugated g-C3N4. ACS Catal. 2018, 8, 1926–1931.
  • 174.
    Shinde, S.S.; Lee, C.-H.; Sami, A.; et al. Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Acs Nano 2017, 11, 347–357.
  • 175.
    Kumar, S.; Jena, A.; Hu, Y.C.; et al. Cobalt diselenide nanorods grafted on graphitic carbon nitride: A synergistic catalyst for oxygen reactions in rechargeable Li− O2 batteries. ChemElectroChem 2018, 5, 29–35.
  • 176.
    Shinde, S.S.; Yu, J.-Y.; Song, J.-W.; et al. Highly active and durable carbon nitride fibers as metal-free bifunctional oxygen electrodes for flexible Zn–air batteries. Nanoscale Horiz. 2017, 2, 333–341.
  • 177.
    Wu, L.; Zhang, Y.; Shang, P.; et al. Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes. J. Mater. Chem. A 2021, 9, 27408–27414.
  • 178.
    Li, P.; Wang, H.; Tan, X.; et al. Bifunctional electrocatalyst with CoN3 active sties dispersed on N-doped graphitic carbon nanosheets for ultrastable Zn-air batteries. Appl. Catal. B Environ. 2022, 316, 121674.
Share this article:
How to Cite
Abbas, Q.; Shinde, P. A.; Abdelkareem, M. A.; Raza, R.; Olabi, A. G. Graphitic Carbon Nitride, Synthesis Strategies, Characteristics and Application as an Electrode for Advanced Rechargeable Battery Systems. Renewable and Sustainable Energy Technology 2025. https://doi.org/10.53941/rest.2025.100009.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.