- 1.
Zhao, A.P.; Li, S.; Li, Z.; et al. Electric Vehicle Charging Planning: A Complex Systems Perspective. IEEE Trans. Smart Grid 2025, 16, 754–772. https://doi.org/10.1109/TSG.2024.3446859.
- 2.
Amrovani, M.A.; Askarian-Abyaneh, H.; Gharibi, M.A.; et al. Urban grid resilience assessment framework: Leveraging electric vehicles, time-based analysis, and mobile distributed generators for repair crew strategic deployment. Sustain. Energy Grids Netw. 2025, 41, 101588. https://doi.org/10.1016/J.SEGAN.2024.101588.
- 3.
Trends in Electric Car Markets—Global EV Outlook 2025—Analysis—IEA. Available online: https://www.iea.org/reports/global-ev-outlook-2025/trends-in-electric-car-markets-2 (accessed on 23 August 2025).
- 4.
Ritchie, H. Tracking Global Data on Electric Vehicles. Our World in Data, February 2024. Available online: https://ourworldindata.org/electric-car-sales (accessed on 23 August 2025).
- 5.
Reddy, V.J.; Hariram, N.P.; Maity, R.; et al. Sustainable Vehicles for Decarbonizing the Transport Sector: A Comparison of Biofuel, Electric, Fuel Cell and Solar-Powered Vehicles. World Electr. Veh. J. 2024, 15, 93. https://doi.org/10.3390/WEVJ15030093.
- 6.
Zaino, R.; Ahmed, V.; Alhammadi, A.M.; et al. Electric Vehicle Adoption: A Comprehensive Systematic Review of Technological, Environmental, Organizational and Policy Impacts. World Electr. Veh. J. 2024, 15, 375. https://doi.org/10.3390/WEVJ15080375.
- 7.
Wang, L.; Qin, Z.; Slangen, T.; et al. Grid Impact of Electric Vehicle Fast Charging Stations: Trends, Standards, Issues and Mitigation Measures—An Overview. IEEE Open J. Power Electron. 2021, 2, 56–74. https://doi.org/10.1109/OJPEL.2021.3054601.
- 8.
He, Y.; Kockelman, K.M.; Perrine, K.A. Optimal locations of U.S. fast charging stations for long-distance trip completion by battery electric vehicles. J. Clean. Prod. 2019, 214, 452–461. https://doi.org/10.1016/J.JCLEPRO.2018.12.188.
- 9.
Deb, S.; Tammi, K.; Kalita, K.; et al. Review of recent trends in charging infrastructure planning for electric vehicles. Wiley Interdiscip. Rev. Energy Env. Environ. 2018, 7, e306. https://doi.org/10.1002/WENE.306.
- 10.
Hemavathi, S.; Shinisha, A. A study on trends and developments in electric vehicle charging technologies. J. Energy Storage 2022, 52, 105013. https://doi.org/10.1016/J.EST.2022.105013.
- 11.
Narasipuram, R.P.; Mopidevi, S. A technological overview & design considerations for developing electric vehicle charging stations. J. Energy Storage 2021, 43, 103225. https://doi.org/10.1016/J.EST.2021.103225.
- 12.
Barman, P.; Dutta, L.; Bordoloi, S.; et al. Renewable energy integration with electric vehicle technology: A review of the existing smart charging approaches. Renew. Sustain. Energy Rev. 2023, 183, 113518. https://doi.org/10.1016/J.RSER.2023.113518.
- 13.
Alkawsi, G.; Baashar, Y.; Abbas, U.D.; et al. Review of Renewable Energy-Based Charging Infrastructure for Electric Vehicles. Appl. Sci. 2021, 11, 3847. https://doi.org/10.3390/APP11093847.
- 14.
Chen, T.; Zhang, X.P.; Wang, J.; et al. A Review on Electric Vehicle Charging Infrastructure Development in the UK. J. Mod. Power Syst. Clean. Energy 2020, 8, 193–205. https://doi.org/10.35833/MPCE.2018.000374.
- 15.
Metais, M.O.; Jouini, O.; Perez, Y.; et al. Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options. Renew. Sustain. Energy Rev. 2022, 153, 111719. https://doi.org/10.1016/J.RSER.2021.111719.
- 16.
Federal Register : National Electric Vehicle Infrastructure Standards and Requirements. Available online: https://www.federalregister.gov/documents/2023/02/28/2023-03500/national-electric-vehicle-infrastructure-standards-and-requirements (accessed on 29 August 2025).
- 17.
EV Share of New Car Registrations Reaches 97 Percent in Norway—Electrive.com. Available online: https://www.electrive.com/2025/05/02/ev-share-of-new-car-registrations-reaches-97-per-cent-in-norway/?utm_source=chatgpt.com (accessed on 30 August 2025).
- 18.
Electric Vehicle Outlook | BloombergNEF. Available online: https://about.bnef.com/insights/clean-transport/electric-vehicle-outlook/?utm_source=chatgpt.com (accessed on 30 August 2025).
- 19.
Matanov, N.; Zahov, A. Developments and Challenges for Electric Vehicle Charging Infrastructure. In Proceedings of the 2020 12th Electrical Engineering Faculty Conference (BulEF), Varna, Bulgaria, 2020, 9–12 September 2020. https://doi.org/10.1109/BULEF51036.2020.9326080.
- 20.
Falvo, M.C.; Sbordone, D.; Bayram, I.S.; et al. EV charging stations and modes: International standards. In Proceedings of the 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2014, Ischia, Italy, 18–20 June 2014; pp. 1134–1139. https://doi.org/10.1109/SPEEDAM.2014.6872107.
- 21.
Rachid, A.; El Fadil, H.; Gaouzi, K.; et al. Electric Vehicle Charging Systems: Comprehensive Review. Energies 2023, 16, 255. https://doi.org/10.3390/EN16010255.
- 22.
J1772_201710: SAE Electric Vehicle and Plug in Hybrid Electric Vehicle Conductive Charge Coupler—SAE International. Available online: https://www.sae.org/standards/content/j1772_201710/ (accessed on 13 September 2023).
- 23.
Yong, J.Y.; Ramachandaramurthy, V.K.; Tan, K.M.; et al. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renew. Sustain. Energy Rev. 2015, 49, 365–385. https://doi.org/10.1016/J.RSER.2015.04.130.
- 24.
IEC 61851-1:2017 | IEC Webstore. Available online: https://webstore.iec.ch/publication/33644 (accessed on 14 September 2023).
- 25.
Hanauer, D. Mode 2 Charging—Testing and Certification for International Market Access. World Electr. Veh. J. 2018, 9, 26. https://doi.org/10.3390/WEVJ9020026.
- 26.
Sun, Y.K. High-Capacity Layered Cathodes for Next-Generation Electric Vehicles. ACS Energy Lett. 2019, 4, 1042–1044. https://doi.org/10.1021/ACSENERGYLETT.9B00652.
- 27.
Dericioglu, C.; Yirik, E.; Unal, E.; et al. A review of charging technologies for commercial electric vehicles. Int. J. Adv. Automot. Technol. Promech Corp. Press. 2018, 2, 61–70. https://doi.org/10.15659/ijaat.18.01.892.
- 28.
GB Standards, GB/T, Guobiao Standard, CNS standards of Taiwan, China National Standards. Available online: http://www.gbstandards.org/ (accessed on 13 September 2023).
- 29.
Adoption of Amendments to the California Zero-Emission Vehicle Regulations: Treatment of Majority Owned Small and Intermediate Volume Manufacturers and Standardization of Charging Systems for the Zero Emission Vehicle Program. Available online: https://ww2.arb.ca.gov/sites/default/files/barcu/regact/charger/uid.pdf (accessed on 14 September 2023)
- 30.
ARB Amends ZEV Rule: Standardizes Chargers & Addresses Automaker Mergers | California Air Resources Board. Available online: https://ww2.arb.ca.gov/news/arb-amends-zev-rule-standardizes-chargers-addresses-automaker-mergers (accessed on 14 September 2023).
- 31.
Development of the SAE J1772 Standard of Electric Vehicle Charger—AG Electrical Technology Co., Ltd. Available online: https://www.ag-elec.com/development-of-the-sae-j1772-standard-of-electric-vehicle-charger.html (accessed on 14 September 2023).
- 32.
FlexPaper AdaptiveUI JSP Example. Available online: https://www.sae.org/standards/content/j1772_201710/preview/ (accessed on 14 September 2023).
- 33.
IEC 62196-1:2022, Plugs, Socket-Outlets, Vehicle Connectors and Vehicle Inlets—Conductive Charging of Electric Vehicles—Part 1: General Requirements. IEC. Available online: https://webstore.iec.ch/publication/59922 (accessed on 14 September 2023).
- 34.
Definition and Implementation of a Global EV...—Park & Charge. Available online: https://www.yumpu.com/en/document/view/39489467/definition-and-implementation-of-a-global-ev-park-charge (accessed on 14 September 2023).
- 35.
GB/T 20234.2-2015 Related Standards (GBT 20234.2-2015). Available online: https://www.chinesestandard.net/Related.aspx/GBT20234.2-2015 (accessed on 14 September 2023).
- 36.
Title: Document Version: D8.2 WiseGRID FastV2G and Other Innovative Optimized Storage Solutions 0.3 Project Number: Project Acronym: Project Title: H2020-731205 WiseGRID Wide Scale Demonstration of Integrated Solutions for Euro-pean SmartGrid Contractual Delivery Date: Actual Delivery Date: Deliverable Type*-Security*. Available online: http://www.wisegrid.euamarias.etraid@grupoetra.com (accessed on 14 September 2023).
- 37.
Rituraj, G.; Mouli, G.R.C.; Bauer, P. A Comprehensive Review on Off-Grid and Hybrid Charging Systems for Electric Vehicles. IEEE Open J. Ind. Electron. Soc. 2022, 3, 203–222. https://doi.org/10.1109/OJIES.2022.3167948.
- 38.
Tesla Charging: The Complete Guide to Charging at Home, in Public and Autonomously | Plugless Power. Available online: https://www.pluglesspower.com/learn/tesla-model-s-charging-home-public-autonomously/ (accessed on 14 September 2023).
- 39.
Types of Electric Car Charging Connectors, and Compatibility: A Field Guide to Electric Vehicle Service Equipment. Available online: https://greentransportation.info/ev-charging/range-confidence/chap4-charging/4-evse-field-guide.html#google_vignette (accessed on 14 September 2023).
- 40.
Rivera, S.; Kouro, S.; Vazquez, S.; et al. Electric Vehicle Charging Infrastructure: From Grid to Battery. IEEE Ind. Electron. Mag. 2021, 15, 37–51. https://doi.org/10.1109/MIE.2020.3039039.
- 41.
Définition: c’est quoi une prise de recharge Type 2 —Recharge électrique. Available online: https://www.recharge-electrique.com/definition-prise-recharge-electrique-type-2/ (accessed on 14 September 2023).
- 42.
Rishishwar, V.; Ojha, A. Review Analysis of Electric Grid Behaviors having Electric Vehicle Charging Stations with G2V and V2G Possibilities. In Proceedings of the 2023 IEEE Renewable Energy and Sustainable E-Mobility Conference (RESEM), Bhopal, India, 17–18 May 2023; pp. 1–4. https://doi.org/10.1109/RESEM57584.2023.10236016.
- 43.
Joseph, A.; Balachandra, P. Smart Grid to Energy Internet: A Systematic Review of Transitioning Electricity Systems. IEEE Access 2020, 8, 215787–215805. https://doi.org/10.1109/ACCESS.2020.3041031.
- 44.
Alsharif, A.; Tan, C.W.; Ayop, R.; et al. A comprehensive review of energy management strategy in Vehicle-to-Grid technology integrated with renewable energy sources. Sustain. Energy Technol. Assess. 2021, 47, 101439. https://doi.org/10.1016/J.SETA.2021.101439.
- 45.
Hasan, M.K.; Habib, A.A.; Islam, S.; et al. Smart Grid Communication Networks for Electric Vehicles Empowering Distributed Energy Generation: Constraints, Challenges, and Recommendations. Energies 2023, 16, 1140. https://doi.org/10.3390/EN16031140.
- 46.
Emodi, N.V.; Dwyer, S.; Nagrath, K.; et al. Electromobility in Australia: Tariff Design Structure and Consumer Preferences for Mobile Distributed Energy Storage. Sustainability 2022, 14, 6631. https://doi.org/10.3390/SU14116631.
- 47.
Aurangzeb, M.; Xin, A.; Iqbal, S.; et al. A Novel Hybrid Approach for Power Quality Improvement in a Vehicle-to-Grid Setup Using Droop-ANN Model. Int. J. Energy Res. 2023, 2023, 7786928. https://doi.org/10.1155/2023/7786928.
- 48.
Mohanty, S.; Panda, S.; Parida, S.M.; et al. Demand side management of electric vehicles in smart grids: A survey on strategies, challenges, modeling, and optimization. Energy Rep. 2022, 8, 12466–12490. https://doi.org/10.1016/J.EGYR.2022.09.023.
- 49.
Solanke, T.U.; Ramachandaramurthy, V.K.; Yong, J.Y.; et al. A review of strategic charging–discharging control of grid-connected electric vehicles. J. Energy Storage 2020, 28, 101193. https://doi.org/10.1016/J.EST.2020.101193.
- 50.
Woody, M.; Arbabzadeh, M.; Lewis, G.M.; et al. Strategies to limit degradation and maximize Li-ion battery service lifetime—Critical review and guidance for stakeholders. J. Energy Storage 2020, 28, 101231. https://doi.org/10.1016/J.EST.2020.101231.
- 51.
Manivannan, B.; Kathirvelu, P.; Balasubramanian, R. A review on wireless charging methods—The prospects for future charging of EV. Renew. Energy Focus. 2023, 46, 68–87. https://doi.org/10.1016/J.REF.2023.06.002.
- 52.
Alam, B.; Ahmad, A.; Rafat, Y.; et al. A Review on Power Pad, Topologies and Standards of Wireless Charging of Electric Vehicles. In Proceedings of the 2022 International Conference on Decision Aid Sciences and Applications, (DASA), Chiangrai, Thailand, 23–25 March 2022; pp. 827–835. https://doi.org/10.1109/DASA54658.2022.9765274.
- 53.
Detka, K.; Górecki, K. Wireless Power Transfer—A Review. Energies 2022, 15, 7236. https://doi.org/10.3390/EN15197236.
- 54.
Palani, G.; Sengamalai, U.; Vishnuram, P.; Nastasi, B. Challenges and Barriers of Wireless Charging Technologies for Electric Vehicles. Energies 2023, 16, 2138. https://doi.org/10.3390/EN16052138.
- 55.
Kosmanos, D.; Maglaras, L.A.; Mavrovouniotis, M.; et al. Route Optimization of Electric Vehicles Based on Dynamic Wireless Charging. IEEE Access 2018, 6, 42551–42565. https://doi.org/10.1109/ACCESS.2018.2847765.
- 56.
Hutchinson, L.; Waterson, B.; Anvari, B.; et al. Potential of wireless power transfer for dynamic charging of electric vehicles. IET Intell. Transp. Syst. 2019, 13, 3–12. https://doi.org/10.1049/IET-ITS.2018.5221.
- 57.
Musavi, F.; Eberle, W. Overview of wireless power transfer technologies for electric vehicle battery charging. IET Power Electron. 2014, 7, 60–66. https://doi.org/10.1049/IET-PEL.2013.0047.
- 58.
Niu, S.; Yu, H.; Niu, S.; et al. Power loss analysis and thermal assessment on wireless electric vehicle charging technology: The over-temperature risk of ground assembly needs attention. Appl. Energy 2020, 275, 115344. https://doi.org/10.1016/J.APENERGY.2020.115344.
- 59.
Sutopo, W.; Nizam, M.; Rahmawatie, B.; et al. A Review of Electric Vehicles Charging Standard Development: Study Case in Indonesia. In Proceedings of the 2018 5th International Conference on Electric Vehicular Technology (ICEVT), Surakarta, Indonesia, 30–31 October 2018; pp. 152–157. https://doi.org/10.1109/ICEVT.2018.8628367.
- 60.
Dimitriadou, K.; Rigogiannis, N.; Fountoukidis, S.; et al. Current Trends in Electric Vehicle Charging Infrastructure; Opportunities and Challenges in Wireless Charging Integration. Energies 2023, 16, 2057. https://doi.org/10.3390/EN16042057.
- 61.
Güven, A.F.; Ateş, N.; Alotaibi, S.; et al. Sustainable hybrid systems for electric vehicle charging infrastructures in regional applications. Sci. Rep. 2025, 15, 4199. https://doi.org/10.1038/S41598-025-87985-7.
- 62.
Tejeida-Padilla, R.; Berdeja-Rocha, E.M.; Badillo-Piña, I.; et al. A Comprehensive Review of Electric Charging Stations with a Systemic Approach. World Electr. Veh. J. 2024, 15, 571. https://doi.org/10.3390/WEVJ15120571.
- 63.
Sayed, E.T.; Olabi, A.G.; Alami, A.H.; et al. Renewable Energy and Energy Storage Systems. Energies 2023, 16, 1415. https://doi.org/10.3390/EN16031415.
- 64.
Rehman, A.U.; Ullah, Z.; Shafiq, A.; et al. Load management, energy economics, and environmental protection nexus considering PV-based EV charging stations. Energy 2023, 281, 128332. https://doi.org/10.1016/J.ENERGY.2023.128332.
- 65.
Khan, S.; Ahmad, A.; Ahmad, F.; et al. A Comprehensive Review on Solar Powered Electric Vehicle Charging System. Smart Sci. 2017, 6, 54–79. https://doi.org/10.1080/23080477.2017.1419054.
- 66.
Cross, J.; Neumark, T. Solar Power and its Discontents: Critiquing Off-grid Infrastructures of Inclusion in East Africa. Dev. Chang. 2021, 52, 902–926. https://doi.org/10.1111/DECH.12668.
- 67.
AOlabi, A.G.; Obaideen, K.; Abdelkareem, M.A.; et al. Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array. Sustainability 2023, 15, 4641. https://doi.org/10.3390/SU15054641.
- 68.
Gabbar, H.A.; Siddique, A.B. Technical and economic evaluation of nuclear powered hybrid renewable energy system for fast charging station. Energy Convers. Manag. X 2023, 17, 100342. https://doi.org/10.1016/J.ECMX.2022.100342.
- 69.
Karmaker, A.K.; Ahmed, M.R.; Hossain, M.A.; et al. Feasibility assessment & design of hybrid renewable energy based electric vehicle charging station in Bangladesh. Sustain. Cities Soc. 2018, 39, 189–202. https://doi.org/10.1016/J.SCS.2018.02.035.
- 70.
Ahmad, F.; Alam, M.S.; Alsaidan, I.S.; et al. Battery swapping station for electric vehicles: Opportunities and challenges. IET Smart Grid 2020, 3, 280–286. https://doi.org/10.1049/IET-STG.2019.0059.
- 71.
Venkateswaran, V.; Guptha, S.; Soman, A. A Perspective on Battery Swapping as a Viable Alternative to Accelerate EV Adoption in India; SAE Technical Papers; SAE: Warrendale, PA, USA, 2022. https://doi.org/10.4271/2022-28-0056.
- 72.
Giliomee, J.H.; Booysen, M.J. Decarbonising South Africa’s long-distance paratransit: Battery swapping with solar-charged minibus trailers. Transp. Res. D Transp. Env. Environ. 2023, 117, 103647. https://doi.org/10.1016/J.TRD.2023.103647.
- 73.
Revankar, S.R.; Kalkhambkar, V.N. Grid integration of battery swapping station: A review. J. Energy Storage 2021, 41, 102937. https://doi.org/10.1016/J.EST.2021.102937.
- 74.
Andrews, C. UK needs better charging. Eng. Technol. 2017, 12, 62–63. https://doi.org/10.1049/ET.2017.0207.
- 75.
Introducing V3 Supercharging | Tesla. Available online: https://www.tesla.com/blog/introducing-v3-supercharging (accessed on 11 September 2023).
- 76.
Renewable Energy & Sustainability | Electrify America. Available online: https://www.electrifyamerica.com/renewable-energy/ (accessed on 4 September 2023).
- 77.
Langer, E. Liquid Cooling in Electric Vehicles-What to Know to Keep EVs on the Go By; CPC: Preston, UK, 2019.
- 78.
UGE Installs Its First Wind-Powered EV Charging Station. Available online: https://newatlas.com/sanya-skypump-wind-powered-ev-charging-station/23738/ (accessed on 5 September 2023).
- 79.
Fathabadi, H. Novel Stand-Alone, Completely Autonomous and Renewable Energy Based Charging Station for Charging Plug-in Hybrid Electric Vehicles (PHEVs). Appl. Energy 2020, 260, 114194. https://doi.org/10.1016/J.APENERGY.2019.114194.
- 80.
Erdemir, D.; Dincer, I. Assessment of Renewable Energy-Driven and Flywheel Integrated Fast-Charging Station for Electric Buses: A Case Study. J. Energy Storage 2020, 30, 101576. https://doi.org/10.1016/J.EST.2020.101576.
- 81.
Olabi, A.G.; Onumaegbu, C.; Wilberforce, T.; et al. Critical review of energy storage systems. Energy 2021, 214, 118987. https://doi.org/10.1016/J.ENERGY.2020.118987.
- 82.
Alami, A.H.; Yasin, A.; Alrashid, R.; et al. Experimental evaluation of compressed air energy storage as a potential replacement of electrochemical batteries. J. Energy Storage 2022, 54, 105263. https://doi.org/10.1016/J.EST.2022.105263.
- 83.
Gómez, J.A.; Santos, D.M. The Status of On-Board Hydrogen Storage in Fuel Cell Electric Vehicles. Designs 2023, 7, 97. https://doi.org/10.3390/DESIGNS7040097.
- 84.
NREL. Grid-Constrained Electric Vehicle Fast Charging Sites: Battery-Buffered Options. Available online: https://driveelectric.gov/files/battery-buffered-case-study.pdf (accessed on 14 September 2025).
- 85.
Kumar, P.; Channi, H.K.; Kumar, R.; et al. A comprehensive review of vehicle-to-grid integration in electric vehicles: Powering the future. Energy Convers. Manag. X 2025, 25, 100864. https://doi.org/10.1016/J.ECMX.2024.100864.
- 86.
Brown, S.; Pyke, D.; Steenhof, P. Electric vehicles: The role and importance of standards in an emerging market. Energy Policy 2010, 38, 3797–3806. https://doi.org/10.1016/J.ENPOL.2010.02.059.
- 87.
NREL. Battery Energy Storage for Electric Vehicle Charging Stations. Available online: https://research-hub.nrel.gov/en/publications/battery-energy-storage-for-electric-vehicle-charging-stations (accessed on 14 September 2025).