- 1.
Rausell, E.; Arnaltes, S.; Peña, A.; et al. Off-grid wind farm for green hydrogen production through a grid-forming control based on reactive power synchronization. Int. J. Hydrogen Energy 2025, 153, 150241. https://doi.org/10.1016/j.ijhydene.2025.150241.
- 2.
Maka, A.O.M.; Ghalut, T. An overview and perspective of solar photovoltaic-green hydrogen production system. Fuel 2025, 400, 135760. https://doi.org/10.1016/j.fuel.2025.135760.
- 3.
Shah, M.; Prajapati, M.; Yadav, K.; et al. A review of the geothermal integrated hydrogen production system as a sustainable way of solving potential fuel shortages. J. Clean. Prod. 2022, 380, 135001. https://doi.org/10.1016/j.jclepro.2022.135001.
- 4.
Ghazvini, M.; Sadeghzadeh, M.; Ahmadi, M.H.; et al. Geothermal energy use in hydrogen production: A review. Int. J. Energy Res. 2019, 43, 7823–7851. https://doi.org/10.1002/er.4778.
- 5.
Karayel, G.K.; Javani, N.; Dincer, I. Hydropower for green hydrogen production in Turkey. Int. J. Hydrogen Energy 2023, 48, 22806–22817. https://doi.org/10.1016/j.ijhydene.2022.04.084.
- 6.
Hassan, Q.; Hafedh, S.A.; Mohammed, H.B.; et al. A review of hydrogen production from bio-energy, technologies and assessments. Energy Harvest. Syst. 2024, 11, 20220117. https://doi.org/10.1515/ehs-2022-0117.
- 7.
Hossain Bhuiyan, M.M.; Siddique, Z. Hydrogen as an alternative fuel: A comprehensive review of challenges and opportunities in production, storage, and transportation. Int. J. Hydrogen Energy 2025, 102, 1026–1044. https://doi.org/10.1016/j.ijhydene.2025.01.033.
- 8.
Li, S.; Zhang, H.; Nie, J.; et al. The Direct Reduction of Iron Ore with Hydrogen. Sustainability 2021, 13, 8866. https://doi.org/10.3390/su13168866.
- 9.
Anand, C.; Chandraja, B.; Nithiya, P.; et al. Green hydrogen for a sustainable future: A review of production methods, innovations, and applications. Int. J. Hydrogen Energy 2025, 111, 319–341. https://doi.org/10.1016/j.ijhydene.2025.02.257.
- 10.
Angelico, R.; Giametta, F.; Bianchi, B.; et al. Green hydrogen for energy transition: A critical perspective. Energies 2025, 18, 404.
- 11.
Omri, A.; Ben Jabeur, S. Climate policies and legislation for renewable energy transition: The roles of financial sector and political institutions. Technol. Forecast. Soc. Chang. 2024, 203, 123347. https://doi.org/10.1016/j.techfore.2024.123347.
- 12.
Kourougianni, F.; Arsalis, A.; Olympios, A.V.; et al. A comprehensive review of green hydrogen energy systems. Renew. Energy 2024, 231, 120911. https://doi.org/10.1016/j.renene.2024.120911.
- 13.
Li, Y.; Hao, J.-s.; Zhou, Y. Economic analysis of different hydrogen production routes under a CO2 pricing mechanism–A levelized cost of hydrogen based study. Int. J. Hydrogen Energy 2025, 128, 47–67. https://doi.org/10.1016/j.ijhydene.2025.04.185.
- 14.
Roy, R.; Antonini, G.; Hayibo, K.S.; et al. Comparative techno-environmental analysis of grey, blue, green/yellow and pale-blue hydrogen production. Int. J. Hydrogen Energy 2025, 116, 200–210. https://doi.org/10.1016/j.ijhydene.2025.03.104.
- 15.
Luo, J.; Liu, P.; Kong, X.; et al. Urban digital twins for citizen-centric planning: A systematic review of built environment perception and public participation. Int. J. Appl. Earth Obs. Geoinf. 2025, 143, 104746. https://doi.org/10.1016/j.jag.2025.104746.
- 16.
Ghasemi, A.; Nikafshan Rad, H.; Akrami, M. Biomass-to-Green Hydrogen: A Review of Techno-Economic-Enviro Assessment of Various Production Methods. Hydrogen 2024, 5, 474–493. https://doi.org/10.3390/hydrogen5030027.
- 17.
Hota, P.; Das, A.; Maiti, D.K. A short review on generation of green fuel hydrogen through water splitting. Int. J. Hydrogen Energy 2023, 48, 523–541. https://doi.org/10.1016/j.ijhydene.2022.09.264.
- 18.
Jaradat, M.; Almashaileh, S.; Bendea, C.; et al. Green Hydrogen in Focus: A Review of Production Technologies, Policy Impact, and Market Developments. Energies 2024, 17, 3992. https://doi.org/10.3390/en17163992.
- 19.
Zainal, B.S.; Ker, P.J.; Mohamed, H.; et al. Recent advancement and assessment of green hydrogen production technologies. Renew. Sustain. Energy Rev. 2024, 189, 113941. https://doi.org/10.1016/j.rser.2023.113941.
- 20.
Vedrtnam, A.; Kalauni, K.; Pahwa, R. A review of water electrolysis technologies with insights into optimization and numerical simulations. Int. J. Hydrogen Energy 2025, 140, 694–727. https://doi.org/10.1016/j.ijhydene.2025.05.295.
- 21.
Yıldırım, B.; Ülgen, B.E.; Coşkuner Filiz, B.; et al. Hydrogen production: Thermolysis method. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2025.
- 22.
Maggio, G.; Vasta, S.; Nicita, A.; et al. Green Hydrogen Generation by Water Photoelectrolysis: Economic and Environmental Analysis. Energies 2025, 18, 1439. https://doi.org/10.3390/en18061439.
- 23.
Deng, Y.; Dewil, R.; Appels, L.; et al. Thermo-chemical water splitting: Selection of priority reversible redox reactions by multi-attribute decision making. Renew. Energy 2021, 170, 800–810. https://doi.org/10.1016/j.renene.2021.02.009.
- 24.
Faraloni, C.; Torzillo, G.; Balestra, F.; et al. Advances and Challenges in Biohydrogen Production by Photosynthetic Microorganisms. Energies 2025, 18, 2319. https://doi.org/10.3390/en18092319.
- 25.
Vidal, A.; Mohiuddin, O.; Chance, E.; et al. Biohydrogen production through dark fermentation of agricultural waste: Novel strain and feedstock characterisation. Bioresour. Technol. 2025, 434, 132839. https://doi.org/10.1016/j.biortech.2025.132839.
- 26.
Santos, G.A.; Bortoli, L.D.; Santos, D.A.; et al. Insights of light spectra on biohydrogen production by photo-fermentation. Int. J. Hydrogen Energy 2025, 149, 150088. https://doi.org/10.1016/j.ijhydene.2025.150088.
- 27.
Al-Rumaihi, A.; Shahbaz, M.; McKay, G.; et al. A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renew. Sustain. Energy Rev. 2022, 167, 112715. https://doi.org/10.1016/j.rser.2022.112715.
- 28.
Mishra, S.; Upadhyay, R.K. Review on biomass gasification: Gasifiers, gasifying mediums, and operational parameters. Mater. Sci. Energy Technol. 2021, 4, 329–340. https://doi.org/10.1016/j.mset.2021.08.009.
- 29.
Brahim, T.; Jemni, A. Green hydrogen production: A review of technologies, challenges, and hybrid system optimization. Renew. Sustain. Energy Rev. 2026, 225, 116194. https://doi.org/10.1016/j.rser.2025.116194.
- 30.
Domínguez-Bolaño, T.; Campos, O.; Barral, V.; et al. An overview of IoT architectures, technologies, and existing open-source projects. Internet Things 2022, 20, 100626. https://doi.org/10.1016/j.iot.2022.100626.
- 31.
Goyal, P.; Sahoo, A.K.; Sharma, T.K. Internet of things: Architecture and enabling technologies. Mater. Today: Proc. 2021, 34, 719–735. https://doi.org/10.1016/j.matpr.2020.04.678.
- 32.
Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010.
- 33.
Surianarayanan, C.; Chelliah, P.R. Integration of the Internet of Things and Cloud. Int. J. Cloud Appl. Comput. 2023, 13. https://doi.org/10.4018/IJCAC.325624.
- 34.
Gubbi, J.; Buyya, R.; Marusic, S.; et al. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. https://doi.org/10.1016/j.future.2013.01.010.
- 35.
Alshiyadi, M.A.S.; Alfahdi, S.A.S.; Almanii, S.R.O.; et al. A Study on Smart Green Hydrogen Production System Using IoT and AI for Small-Scale Energy Applications. In Proceedings of the 2024 2nd International Conference on Computing and Data Analytics, ICCDA 2024, Shinas, Oman, 12–13 November 2024.
- 36.
Folgado, F.J.; González, I.; Calderón, A.J. Data acquisition and monitoring system framed in Industrial Internet of Things for PEM hydrogen generators. Internet Things 2023, 22, 100795. https://doi.org/10.1016/j.iot.2023.100795.
- 37.
Nnabuife, S.G.; Udemu, C.; Hamzat, A.K.; et al. Smart monitoring and control systems for hydrogen fuel cells using AI. Int. J. Hydrogen Energy 2024, 110, 704–726. https://doi.org/10.1016/j.ijhydene.2025.02.232.
- 38.
Hazem, A.; Afia, R.S.A.; Zoghby, H.M.E.; et al. Integrating LoRa Networks and AI for Enhanced Green Hydrogen Production Efficiency. In Proceedings of the 2024 9th International Youth Conference on Energy (IYCE), Colmar, France, 2–6 July 2024; pp. 1–8.
- 39.
Chaurasia, N.; Kumar, P. A comprehensive study on issues and challenges related to privacy and security in IoT. e-Prime Adv. Electr. Eng. Electron. Energy 2023, 4, 100158. https://doi.org/10.1016/j.prime.2023.100158.
- 40.
Al Hajri, N.H.; Al Harthi, R.N.; Pasam, G.; et al. IoT and Machine Learning based Green Energy Generation using Hybrid Renewable Energy Sources of Solar, Wind and Hydrogen Fuel Cells. E3S Web Conf. 2024, 472, 12. https://doi.org/10.1051/e3sconf/202447201008.
- 41.
Akyuz, E.; Çobanoğlu, İ.; Demircan, B. Internet of Things and Cloud-Based Monitoring of an Electrolysis and Fuel Cell System. J. Sci. Ind. Res. 2025, 84, 731–741. https://doi.org/10.56042/jsir.v84i7.14515.
- 42.
Shash, A.Y.; Abdeltawab, N.M.; Hassan, D.M.; et al. Computational Methods, Artificial Intelligence, Modeling, and Simulation Applications in Green Hydrogen Production Through Water Electrolysis: A Review. Hydrogen 2025, 6, 21. https://doi.org/10.3390/hydrogen6020021.
- 43.
Wei, J.; Wu, Y.; Mirzaliev, S.; et al. Artificial intelligence applications in hydrogen system: Advancing renewable energy utilization for global hydrogen economy and sustainability goals. Int. J. Hydrogen Energy 2025, 122, 359–373. https://doi.org/10.1016/j.ijhydene.2025.03.350.
- 44.
Lawrence, N.P.; Damarla, S.K.; Kim, J.W.; et al. Machine learning for industrial sensing and control: A survey and practical perspective. Control Eng. Pract. 2024, 145, 105841. https://doi.org/10.1016/j.conengprac.2024.105841.
- 45.
Chen, M.; Yang, Y.; Ding, Y.; et al. Toward a molecular-scale picture of water electrolysis: mechanistic insights, fundamental kinetics and electrocatalyst dynamic evolution. Coord. Chem. Rev. 2025, 536, 216651. https://doi.org/10.1016/j.ccr.2025.216651.
- 46.
Hayatzadeh, A.; Fattahi, M.; Rezaveisi, A. Machine learning algorithms for operating parameters predictions in proton exchange membrane water electrolyzers: Anode side catalyst. Int. J. Hydrogen Energy 2024, 56, 302–314. https://doi.org/10.1016/j.ijhydene.2023.12.149.
- 47.
Kelvin Edem, B.; Chinedu, I. Machine learning for green hydrogen production. Comput. Sci. IT Res. J. 2023, 4, 368–385. https://doi.org/10.51594/csitrj.v4i3.1253.
- 48.
Erbay, C. Machine learning models for solar forecasting and impact on green hydrogen production costs. Int. J. Hydrogen Energy 2025, 132, 225–238. https://doi.org/10.1016/j.ijhydene.2025.04.465.
- 49.
Liu, X.; Zhu, T.; Wei, Z.; et al. Performance analysis of a novel solar-to-hydrogen system with energy storage via machine learning and particle swarm optimization. Energy 2025, 315, 134380. https://doi.org/10.1016/j.energy.2025.134380.
- 50.
Askr, H.; Basha, S.H.; Abdelnapi, N.M.M.; et al. Artificial intelligence for sustainable green hydrogen production: A systematic literature review. Renew. Sustain. Energy Rev. 2025, 224, 116071. https://doi.org/10.1016/j.rser.2025.116071.
- 51.
Khandelwal, K.; Nanda, S.; Dalai, A.K. Machine learning modeling of supercritical water gasification for predictive hydrogen production from waste biomass. Biomass Bioenergy 2025, 197, 107816. https://doi.org/10.1016/j.biombioe.2025.107816.
- 52.
Tuntiwongwat, T.; Yukawa, T.; Srinophakun, T.R.; et al. Machine learning and thermodynamic modeling for optimizing hydrogen production via algae-biomass co-gasification. Clean. Eng. Technol. 2025, 28, 101038. https://doi.org/10.1016/j.clet.2025.101038.
- 53.
Urhan, B.B.; Erdoğmuş, A.; Dokuz, A.Ş.; et al. Predicting green hydrogen production using electrolyzers driven by photovoltaic panels and wind turbines based on machine learning techniques: A pathway to on-site hydrogen refuelling stations. Int. J. Hydrogen Energy 2025, 101, 1421–1438. https://doi.org/10.1016/j.ijhydene.2025.01.017.
- 54.
Butler, A.J.; Kalam, A. AI Predictive Simulation for Low-Cost Hydrogen Production. Energy Storage Appl. 2025, 2, 9. https://doi.org/10.3390/esa2030009.
- 55.
Karnoub, A.; Stuber, D.; Mertes, J.; et al. How to understand the role of human in digital twins: A digital triplet concept. Digit. Eng. 2025, 6, 100052. https://doi.org/10.1016/j.dte.2025.100052.
- 56.
Naanani, H.; Nachtane, M.; Faik, A. Advancing hydrogen safety and reliability through digital twins: Applications, models, and future prospects. Int. J. Hydrogen Energy 2025, 115, 344–360. https://doi.org/10.1016/j.ijhydene.2025.02.440.
- 57.
Javaid, M.; Haleem, A.; Suman, R. Digital Twin applications toward Industry 4.0: A Review. Cogn. Robot. 2023, 3, 71–92. https://doi.org/10.1016/j.cogr.2023.04.003.
- 58.
Shin, Y.; Oh, J.; Jang, D.; et al. Digital Twin of Alkaline Water Electrolysis Systems for Green Hydrogen Production. In Computer Aided Chemical Engineering; Yamashita, Y., Kano, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 49, pp. 1483–1488.
- 59.
Deshmukh, R.S.; Rituraj, G.; Bauer, P.; et al. Real-time digital twin implementation of power electronics-based hydrogen production system. Energy Rep. 2025, 13, 5006–5015. https://doi.org/10.1016/j.egyr.2025.04.017.
- 60.
Folgado, F.J.; Orellana, D.; González, I.; et al. Processes Supervision System for Green Hydrogen Production: Experimental Characterization and Data Acquisition of PEM Electrolyzer. Eng. Proc. 2022, 19. https://doi.org/10.3390/ECP2022-12651.
- 61.
Torabi, T.; Ferrari, M.-C.; Liguori, S.; et al. Green hydrogen production in methylcyclohexane dehydrogenation by ceramic membrane reactor as net-zero approach: Optimisation via digital twin methodology. Chem. Eng. J. 2025, 165783. https://doi.org/10.1016/j.cej.2025.165783.
- 62.
Oleś, S.; Ziółkowski, P.; Mikielewicz, D. Analysis of "green methanol" production from carbon dioxide acquired from negative emission power plants using CFD approach for catalytic reactor. Renew. Energy 2025, 240, 122160. https://doi.org/10.1016/j.renene.2024.122160.
- 63.
Liang, T.; Liu, Z.; Sun, H.; et al. Multivariate Based Alkaline Electrolyzer Digital Twin Model Construction; Springer: Singapore, 2024; pp. 269–280.
- 64.
Song, Y.; Chen, Z.; Zhou, Y.; et al. Digital twins based on machine learning for optimal control of chemical looping hydrogen generation processes. Int. J. Hydrogen Energy 2024, 61, 568–577. https://doi.org/10.1016/j.ijhydene.2024.02.350.
- 65.
Kayan, R.R.; Jauhar, S.K.; Kamble, S.S.; et al. Optimizing bio-hydrogen production from agri-waste: A digital twin approach for sustainable supply chain management and carbon neutrality. Comput. Ind. Eng. 2025, 204, 111021. https://doi.org/10.1016/j.cie.2025.111021.
- 66.
Abdin, Z. Empowering the hydrogen economy: The transformative potential of blockchain technology. Renew. Sustain. Energy Rev. 2024, 200, 114572. https://doi.org/10.1016/j.rser.2024.114572.
- 67.
Hussein, Z.; Salama, M.A.; El-Rahman, S.A. Evolution of blockchain consensus algorithms: a review on the latest milestones of blockchain consensus algorithms. Cybersecurity 2023, 6, 30. https://doi.org/10.1186/s42400-023-00163-y.
- 68.
Schmid, J.; Ubacht, J.; van Engelenburg, S.; et al. Is it green? Designing a blockchain-based certification system for the EU hydrogen market. Front. Blockchain 2024, 7, 1408743.
- 69.
Masoomi, B.; Toufighi, S.P.; Arman, H.; et al. Blockchain-enabled risk mitigation in green hydrogen supply chains: an interval type-2 fuzzy MCDM approach. Clean. Logist. Supply Chain 2025, 16, 100238. https://doi.org/10.1016/j.clscn.2025.100238.
- 70.
Bagayogo, A.; Azeroual, M.; Aboubakr, M.E.; et al. Impact of Blockchain Technology On Green Hydrogen Production. In Proceedings of the 2025 5th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Fez, Morocco, 15–16 May 2025; pp. 1–5.
- 71.
Tetouani, A.; Taouil, A.; Rouky, N.; et al. Integrated Blockchain, IoT, and Green Hydrogen Approach for Sustainable and Connected Supply Chain—Application Case in Morocco. Eng. Proc. 2025, 97. https://doi.org/10.3390/engproc2025097055.
- 72.
Bhavana, G.B.; Anand, R.; Ramprabhakar, J.; et al. Applications of blockchain technology in peer-to-peer energy markets and green hydrogen supply chains: A topical review. Sci. Rep. 2024, 14, 21954.
- 73.
Savian, F.; Tomasin, L.; Sellitto, M.; et al. Green Hydrogen, Industrial Symbiosis, and Blockchain: Enhancing Sustainability and Resilience in Supply Chains. In Proceedings of the 37th ECMS International Conference on Modelling and Simulation, Florence, Italy, 20–23 June 2023; pp. 350–356.
- 74.
Bollmann, J.; Pitchaimuthu, S.; Kühnel, M.F. Challenges of Industrial-Scale Testing Infrastructure for Green Hydrogen Technologies. Energies 2023, 16, 3604. https://doi.org/10.3390/en16083604.
- 75.
Singh, V.; V.M, A.; V.J, S.; et al. Green hydrogen value chain challenges and global readiness for a sustainable energy future. iScience 2025, 28, 112900. https://doi.org/10.1016/j.isci.2025.112900.
- 76.
Fokeer, S.; Bianco, E.; Strohmaier, R.; et al. Green Hydrogen for Sustainable Industrial Development: A Policy Toolkit for Developing Countries; International Renewable Energy Agency: Bonn, Germany, 2024.
- 77.
Gessler, M. Skilled Workforce for the Hydrogen Economy: International Review of Na-tional Workforce Studies. Apprenticeships in England–Initial or Continuing VET. In Proceedings of the 6th Crossing Boundaries Conference in Vocational Education and Training, Palma, Mallorca, Spain, 21–23 May 2025; p. 210.
- 78.
Sheveleva, A.V.; Solomos, V.I. Digital Technologies in the Development of Hydrogen Energy. In Smart Green Innovations in Industry 4.0: New Opportunities for Climate Change Risk Management in the “Decade of Action”; Popkova, E.G., Ed.; Springer Nature: Cham, Switzerland, 2023; pp. 257–264.
- 79.
Yavari, A.; Harrison, C.J.; Gorji, S.A.; et al. Hydrogen 4.0: A Cyber–Physical System for Renewable Hydrogen Energy Plants. Sensors 2024, 24, 3239. https://doi.org/10.3390/s24103239.