2508001057
  • Open Access
  • Article
A Dual-Channel Pine Wilt Disease Recognition Method with Discrete Wavelet Transform
  • Zimo Zhou,   
  • Simon X. Yang *

Received: 29 May 2025 | Revised: 20 Jun 2025 | Accepted: 15 Jun 2025 | Published: 05 Aug 2025

Abstract

Pine wilt disease is a significant global plant epidemic and a management priority for numerous countries worldwide. Pine wood nematodes can parasitize a wide range of pine species, making early detection of infected trees essential for preventing further spread of the disease. Recent advances in deep learning and remote sensing technologies have enabled efficient automated detection of diseased trees. Most existing methods rely on convolutional neural network layers for feature extraction and spatial dimension reduction, which may cause the loss of fine-grained texture details and lead to misdetection of background elements and visually similar objects. To enhance diseased tree recognition accuracy, this paper proposes an object detection model using images captured by unmanned aerial vehicles. The proposed method incorporates discrete wavelet transform (DWT) to reduce spatial resolution while preserving critical information for further analysis, and integrates a cross-modal channel enhancement module within a two-stream feature extraction network. Furthermore, the method incorporates a RoI-based similarity constraint that applies cosine similarity loss and classification supervision to ensure coherent feature representations between processing branches. This approach achieves 89.2% accuracy on the pine wilt disease dataset and outperforms advanced methods on the VisDrone dataset. Several object detection models are compared based on the mean average precision (mAP) metric. Results demonstrate that the DWT-based detection algorithm achieves superior performance in detecting individual small targets and clustered infected pine trees.

References 

  • 1.
    Zhao, J.; Huang, J.; Yan, J.; et al. Economic loss of pine wood nematode disease in mainland China from 1998 to 2017. Forests 2020, 11, 1042.
  • 2.
    Shi, J.; Luo, Y.Q.; Song, J.Y.; et al. Traits of Masson pine affecting attack of pine wood nematode. J. Integr. Plant Biol. 2007, 49, 1763–1771.
  • 3.
    Quirion, B.R.; Domke, G.M.; Walters, B.F.; et al. Insect and disease disturbances correlate with reduced carbon sequestration in forests of the contiguous United States. Front. For. Glob. Chang. 2021, 4, 716582.
  • 4.
    Kiyohara, T.; Tokushige, Y. Inoculation experiments of a nematode, Bursaphelenchus sp., onto pine trees. J. Jpn. For. Soc. 1971, 53, 210–218.
  • 5.
    Mamiya, Y.; Enda, N. Transmission of Bursaphelenchus Lignicolus (Nematoda: Aphelenchoididae) By Monochamus Alternatus (Coleoptera: Cerambycidae). Nematologica 1972, 18, 159–162.
  • 6.

    Back, M.A.; Bonifacio, L.; Inacio, M.L.; et al. Pine wilt disease: A global threat to forestry. Plant Pathol. 2024, 73, 1026–1041.

  • 7.
    Shimazu, M.; Katagiri, K. Pathogens of the pine sawyer, Monochamus alternatus Hope, and possible utilization of them in a control program. In Proceedings of the 17th IUFRO World Congress, Kyoto, Japan, 6–17 September 1981; Volume 504, pp. 291–295.
  • 8.
    Yu, H.B.; Jung, Y.H.; Lee, S.M.; et al. Biological control of Japanese pine sawyer, Monochamus alternatus (Coleoptera: Cerambycidae) using Korean entomopathogenic nematode isolates. Korean J. Pestic. Sci. 2016, 20, 361–368.
  • 9.
    Sousa, E.; Vale, F.; Abrantes, I. Pine wilt Disease in Europe: Biological Interactions and Integrated Management; FNAPF: Lisbon, Portugal, 2015.
  • 10.
    Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 1989, 2, 303–314.
  • 11.
    Qian, K.; Duan, Y.; Luo, C.; et al. Pixel-Level Domain Adaptation for Real-to-Sim Object Pose Estimation. IEEE Trans. Cogn. Dev. Syst. 2023, 15, 1618–1627.
  • 12.
    Li, R.; Mo, T.; Yang, J.; et al. Bridge inspection named entity recognition via BERT and lexicon augmented machine reading comprehension neural model. Adv. Eng. Inform. 2021, 50, 101416.
  • 13.
    Yan, C.; Meng, L.; Li, L.; et al. Age-invariant face recognition by multi-feature fusionand decomposition with self-attention. ACM Trans. Multimed. Comput. Commun. Appl. 2022, 18, 1–18.
  • 14.
    Yan, C.; Li, Z.; Zhang, Y.; et al. Depth image denoising using nuclear norm and learning graph model. ACM Trans. Multimed. Comput. Commun. Appl. 2020, 16, 1–17.
  • 15.
    Hopfield, J.J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 1984, 81, 3088–3092.
  • 16.
    Hochreiter, S. Long Short-term Memory; Neural Computation; MIT-Press: Cambridge, MA, USA, 1997.
  • 17.
    Sutskever, I. Sequence to Sequence Learning with Neural Networks. arXiv 2014, arXiv:1409.3215.
  • 18.
    Vaswani, A. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 1.
  • 19.
    Egli, S.; Hpke, M. CNN-based tree species classification using high resolution RGB image data from automated UAV observations. Remote. Sens. 2020, 12, 3892.
  • 20.
    Ke, C.; Ni, J.; Zhao, Y.; et al. Cross-Scale Feature Enhancement for Cotton Seedling Detection in UAV Images. IEEE Geosci. Remote. Sens. Lett. 2024, 21, 1–5.
  • 21.
    Yu, R.; Luo, Y.; Zhou, Q.; et al. A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102363.
  • 22.
    Zhu, P.; Wen, L.; Du, D.; et al. Detection and tracking meet drones challenge. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 7380–7399.
  • 23.
    Yue, M.; Quan, L.; Cheng-Ming, Y.; et al. Study on early diagnosis technology of pine wilt disease. J. Shandong Agric. Univ. 2014, 45, 158–160.
  • 24.
    Li, M.; Li, H.; Ding, X.; et al. The detection of pine wilt disease: A literature review. Int. J. Mol. Sci. 2022, 23, 10797.
  • 25.
    Kong, Q.Q.; Ding, X.L.; Chen, Y.F.; et al. Comparison of morphological indexes and the pathogenicity of Bursaphelenchus xylophilus in northern and southern China. Forests 2021, 12, 310.
  • 26.
    Hu, Y.; Kong, X.; Wang, X.; et al. Direct PCR-based method for detecting Bursaphelenchus xylophilus, the pine wood nematode in wood tissue of Pinus massoniana. For. Pathol. 2011, 41, 165–168.
  • 27.
    Lecun, Y.; Bottou, L.; Bengio, Y.; et al. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324.
  • 28.
    Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1.
  • 29.
    Sellers, T.; Lei, T.; Luo, C.; et al. A node selection algorithm to graph-based multi-waypoint optimization navigation and mapping. Intell. Robot. 2022, 2, 333–54.
  • 30.
    Ni, J.; Zhang, Z.; Shen, K.; et al. An improved deep network-based RGB-D semantic segmentation method for indoor scenes. Int. J. Mach. Learn. Cybern. 2024, 15, 589–604.
  • 31.
    Lei, T.; Luo, C.; Jan, G.E.; et al. Deep learning-based complete coverage path planning with re-joint and obstacle fusion paradigm. Front. Robot. AI 2022, 9, 843816.
  • 32.
    Yan, C.; Hao, Y.; Li, L.; et al. Task-adaptive attention for image captioning. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 43–51.
  • 33.
    LeCun, Y.; Boser, B.; Denker, J.S.; et al. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551.
  • 34.
    Ioffe, S. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167.
  • 35.
    He, K.; Zhang, X.; Ren, S.; et al. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
  • 36.
    Girshick, R.; Donahue, J.; Darrell, T.; et al. Region-Based Convolutional Networks for Accurate Object Detection and Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158.
  • 37.
    Redmon, J. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.
  • 38.
    Redmon, J.; Farhadi, A. YOLO9000: better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
  • 39.
    Farhadi, A.; Redmon, J. Yolov3: An incremental improvement. In Computer Vision and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2018; Volume 1804, pp. 1–6.
  • 40.
    Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
  • 41.
    Girshick, R. Fast r-cnn. arXiv 2015, arXiv:1504.08083.
  • 42.
    Ren, S.; He, K.; Girshick, R.; et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149.
  • 43.
    Duan, K.; Bai, S.; Xie, L.; et al. Centernet: Keypoint triplets for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6569–6578.
  • 44.
    Tian, Z.; Shen, C.; Chen, H.; et al. FCOS: A simple and strong anchor-free object detector. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 1922–1933.
  • 45.
    Dosovitskiy, A. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.
  • 46.
    Carion, N.; Massa, F.; Synnaeve, G.; et al. End-to-end object detection with transformers. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 213–229.
  • 47.
    Zhao, Y.; Lv, W.; Xu, S.; et al. Detrs beat yolos on real-time object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 16965–16974.
  • 48.
    Iordache, M.D.; Mantas, V.; Baltazar, E.; et al. A machine learning approach to detecting pine wilt disease using airborne spectral imagery. Remote. Sens. 2020, 12, 2280.
  • 49.
    Yu, R.; Huo, L.; Huang, H.; et al. Early detection of pine wilt disease tree candidates using time-series of spectral signatures. Front. Plant Sci. 2022, 13, 1000093.
  • 50.
    Wu, W.; Zhang, Z.; Zheng, L.; et al. Research progress on the early monitoring of pine wilt disease using hyperspectral techniques. Sensors 2020, 20, 3729.
  • 51.
    Zhou, Z.; Zhang, Y.; Gu, Z.; et al. Deep learning approaches for object recognition in plant diseases: A review. Intell. Robot. 2023, 3, 514–537.
  • 52.
    Deng, X.; Tong, Z.; Lan, Y.; et al. Detection and location of dead trees with pine wilt disease based on deep learning and UAV remote sensing. AgriEngineering 2020, 2, 294–307.
  • 53.
    Oide, A.H.; Nagasaka, Y.; Tanaka, K. Performance of machine learning algorithms for detecting pine wilt disease infection using visible color imagery by UAV remote sensing. Remote. Sens. Appl. Soc. Environ. 2022, 28, 100869.
  • 54.
    Xie, W.; Wang, H.; Liu, W.; et al. Early-Stage Pine Wilt Disease Detection via Multi-Feature Fusion in UAV Imagery. Forests 2024, 15, 171.
  • 55.
    Jocher, G.; Chaurasia, A.; Stoken, A.; et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation. 2022. Available online: https://github.com/ultralytics/yolov5 (accessed on 10 May 2025).
  • 56.
    Wu, Z.; Jiang, X. Extraction of pine wilt disease regions using UAV RGB imagery and improved mask R-CNN models fused with ConvNeXt. Forests 2023, 14, 1672.
  • 57.
    Zhang, N.; Chai, X.; Li, N.; et al. Applicability of UAV-based optical imagery and classification algorithms for detecting pine wilt disease at different infection stages. GIScience Remote. Sens. 2023, 60, 2170479.
  • 58.
    Zhou, Z.; Yang, X. Pine wilt disease detection in UAV-CAPTURED images. Int. J. Robot. Autom 2022, 37, 37–43.
  • 59.
    Huang, X.; Gang, W.; Li, J.; et al. Extraction of pine wilt disease based on a two-stage unmanned aerial vehicle deep learning method. J. Appl. Remote. Sens. 2024, 18, 014503–014503.
  • 60.
    Lin, T.Y.; Dollr, P.; Girshick, R.; et al. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.
  • 61.
    Sun, W.; Dai, L.; Zhang, X.; et al. RSOD: Real-time small object detection algorithm in UAV-based traffic monitoring. Appl. Intell. 2021, 52, 8448–8463.
  • 62.
    Ye, T.; Qin, W.; Li, Y.; et al. Dense and Small Object Detection in UAV-Vision Based on a Global-Local Feature Enhanced Network. IEEE Trans. Instrum. Meas. 2022, 71, 1–13.
  • 63.
    Zhao, H.; Zhang, H.; Zhao, Y. Yolov7-sea: Object detection of maritime uav images based on improved yolov7. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023, pp. 233–238.
  • 64.
    Yang, L.; Zhang, R.Y.; Li, L.; et al. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks. In Proceedings of the 38th International Conference on Machine Learning, Virtual Event, 18–24 July 2021; Volume 139, pp. 11863–11874.
  • 65.
    Ni, J.; Zhu, S.; Tang, G.; et al. A Small-Object Detection Model Based on Improved YOLOv8s for UAV Image Scenarios. Remote. Sens. 2024, 16, 2465.
  • 66.
    Wang, F.; Wang, H.; Qin, Z.; et al. UAV target detection algorithm based on improved YOLOv8. IEEE Access 2023, https://doi.org/10.1109/ACCESS.2023.3325677.
  • 67.
    Zhang, Y.; Zuo, Z.; Xu, X.; et al. Road damage detection using UAV images based on multi-level attention mechanism. Autom. Constr. 2022, 144, 104613.
  • 68.
    Xu, G.; Liao, W.; Zhang, X.; et al. Haar wavelet downsampling: A simple but effective downsampling module for semantic segmentation. Pattern Recognit. 2023, 143, 109819.
  • 69.
    Finder, S.E.; Amoyal, R.; Treister, E.; et al. Wavelet Convolutions for Large Receptive Fields. arXiv 2024, arXiv:2407.05848.
  • 70.
    Porwik, P.; Lisowska, A. The Haar-wavelet transform in digital image processing: its status and achievements. Mach. Graph. Vis. 2004, 13, 79–98.
  • 71.
    Chen, J.; Kao, S.h.; He, H.; et al. Run, don’t walk: chasing higher FLOPS for faster neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 12021–12031.
  • 72.
    Woo, S.; Park, J.; Lee, J.Y.; et al. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.
  • 73.
    Liu, S.; Qi, L.; Qin, H.; et al. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.
  • 74.
    Wang, C.; He, W.; Nie, Y.; et al. Gold-YOLO: Efficient object detector via gather-and-distribute mechanism. Adv. Neural Inf. Process. Syst. 2024, 36, 51094–51112.
  • 75.
    Dharejo, F.A.; Deeba, F.; Zhou, Y.; et al. TWIST-GAN: Towards wavelet transform and transferred GAN for spatio-temporal single image super resolution. ACM Trans. Intell. Syst. Technol. 2021, 12, 1–20.
  • 76.
    Yang, H.H.; Yang, C.H.H.; Wang, Y.C.F. Wavelet channel attention module with a fusion network for single image deraining. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Virtual, 25–28 October 2020; pp. 883–887.
  • 77.
    Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
  • 78.
    He, K.; Gkioxari, G.; Dollr, P.; et al. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.
  • 79.
    Zhang, H.; Cisse, M.; Dauphin, Y.N.; et al. mixup: Beyond empirical risk minimization. arXiv 2017, arXiv:1710.09412.
  • 80.
    Jocher, G.; Qiu, J.; Chaurasia, A. Ultralytics YOLO (Version 8.0.0). Available online: https://github.com/ultralytics/ultralytics (accessed on 5 May 2025).
  • 81.
    Loshchilov, I. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
  • 82.
    Digital Research Alliance of Canada. Digital Research Alliance of Canada, n.d. Available online: https://alliancecan.ca/en (accessed on 3 October 2024).
  • 83.
    Gevorgyan, Z. SIoU Loss: More Powerful Learning for Bounding Box Regression. arXiv 2022, arXiv:2205.12740.
  • 84.
    Lin, T.Y.; Maire, M.; Belongie, S.; et al. Microsoft coco: Common objects in context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part V 13, pp. 740–755.
  • 85.
    Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.
  • 86.
    Li, C.; Li, L.; Jiang, H.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976.
  • 87.
    Xu, K.; Qin, M.; Sun, F.; et al. Learning in the frequency domain. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1740–1749.
  • 88.
    Selvaraju, R.R.; Cogswell, M.; Das, A.; et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626.
Share this article:
How to Cite
Zhou, Z.; Yang, S. X. A Dual-Channel Pine Wilt Disease Recognition Method with Discrete Wavelet Transform. Sensors and AI 2025, 1 (1), 30–44.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.