- 1.
Zhao, J.; Huang, J.; Yan, J.; et al. Economic loss of pine wood nematode disease in mainland China from 1998 to 2017. Forests 2020, 11, 1042.
- 2.
Shi, J.; Luo, Y.Q.; Song, J.Y.; et al. Traits of Masson pine affecting attack of pine wood nematode. J. Integr. Plant Biol. 2007, 49, 1763–1771.
- 3.
Quirion, B.R.; Domke, G.M.; Walters, B.F.; et al. Insect and disease disturbances correlate with reduced carbon sequestration in forests of the contiguous United States. Front. For. Glob. Chang. 2021, 4, 716582.
- 4.
Kiyohara, T.; Tokushige, Y. Inoculation experiments of a nematode, Bursaphelenchus sp., onto pine trees. J. Jpn. For. Soc. 1971, 53, 210–218.
- 5.
Mamiya, Y.; Enda, N. Transmission of Bursaphelenchus Lignicolus (Nematoda: Aphelenchoididae) By Monochamus Alternatus (Coleoptera: Cerambycidae). Nematologica 1972, 18, 159–162.
- 6.
Back, M.A.; Bonifacio, L.; Inacio, M.L.; et al. Pine wilt disease: A global threat to forestry. Plant Pathol. 2024, 73, 1026–1041.
- 7.
Shimazu, M.; Katagiri, K. Pathogens of the pine sawyer, Monochamus alternatus Hope, and possible utilization of them in a control program. In Proceedings of the 17th IUFRO World Congress, Kyoto, Japan, 6–17 September 1981; Volume 504, pp. 291–295.
- 8.
Yu, H.B.; Jung, Y.H.; Lee, S.M.; et al. Biological control of Japanese pine sawyer, Monochamus alternatus (Coleoptera: Cerambycidae) using Korean entomopathogenic nematode isolates. Korean J. Pestic. Sci. 2016, 20, 361–368.
- 9.
Sousa, E.; Vale, F.; Abrantes, I. Pine wilt Disease in Europe: Biological Interactions and Integrated Management; FNAPF: Lisbon, Portugal, 2015.
- 10.
Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 1989, 2, 303–314.
- 11.
Qian, K.; Duan, Y.; Luo, C.; et al. Pixel-Level Domain Adaptation for Real-to-Sim Object Pose Estimation. IEEE Trans. Cogn. Dev. Syst. 2023, 15, 1618–1627.
- 12.
Li, R.; Mo, T.; Yang, J.; et al. Bridge inspection named entity recognition via BERT and lexicon augmented machine reading comprehension neural model. Adv. Eng. Inform. 2021, 50, 101416.
- 13.
Yan, C.; Meng, L.; Li, L.; et al. Age-invariant face recognition by multi-feature fusionand decomposition with self-attention. ACM Trans. Multimed. Comput. Commun. Appl. 2022, 18, 1–18.
- 14.
Yan, C.; Li, Z.; Zhang, Y.; et al. Depth image denoising using nuclear norm and learning graph model. ACM Trans. Multimed. Comput. Commun. Appl. 2020, 16, 1–17.
- 15.
Hopfield, J.J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 1984, 81, 3088–3092.
- 16.
Hochreiter, S. Long Short-term Memory; Neural Computation; MIT-Press: Cambridge, MA, USA, 1997.
- 17.
Sutskever, I. Sequence to Sequence Learning with Neural Networks. arXiv 2014, arXiv:1409.3215.
- 18.
Vaswani, A. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 1.
- 19.
Egli, S.; Hpke, M. CNN-based tree species classification using high resolution RGB image data from automated UAV observations. Remote. Sens. 2020, 12, 3892.
- 20.
Ke, C.; Ni, J.; Zhao, Y.; et al. Cross-Scale Feature Enhancement for Cotton Seedling Detection in UAV Images. IEEE Geosci. Remote. Sens. Lett. 2024, 21, 1–5.
- 21.
Yu, R.; Luo, Y.; Zhou, Q.; et al. A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102363.
- 22.
Zhu, P.; Wen, L.; Du, D.; et al. Detection and tracking meet drones challenge. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 7380–7399.
- 23.
Yue, M.; Quan, L.; Cheng-Ming, Y.; et al. Study on early diagnosis technology of pine wilt disease. J. Shandong Agric. Univ. 2014, 45, 158–160.
- 24.
Li, M.; Li, H.; Ding, X.; et al. The detection of pine wilt disease: A literature review. Int. J. Mol. Sci. 2022, 23, 10797.
- 25.
Kong, Q.Q.; Ding, X.L.; Chen, Y.F.; et al. Comparison of morphological indexes and the pathogenicity of Bursaphelenchus xylophilus in northern and southern China. Forests 2021, 12, 310.
- 26.
Hu, Y.; Kong, X.; Wang, X.; et al. Direct PCR-based method for detecting Bursaphelenchus xylophilus, the pine wood nematode in wood tissue of Pinus massoniana. For. Pathol. 2011, 41, 165–168.
- 27.
Lecun, Y.; Bottou, L.; Bengio, Y.; et al. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324.
- 28.
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1.
- 29.
Sellers, T.; Lei, T.; Luo, C.; et al. A node selection algorithm to graph-based multi-waypoint optimization navigation and mapping. Intell. Robot. 2022, 2, 333–54.
- 30.
Ni, J.; Zhang, Z.; Shen, K.; et al. An improved deep network-based RGB-D semantic segmentation method for indoor scenes. Int. J. Mach. Learn. Cybern. 2024, 15, 589–604.
- 31.
Lei, T.; Luo, C.; Jan, G.E.; et al. Deep learning-based complete coverage path planning with re-joint and obstacle fusion paradigm. Front. Robot. AI 2022, 9, 843816.
- 32.
Yan, C.; Hao, Y.; Li, L.; et al. Task-adaptive attention for image captioning. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 43–51.
- 33.
LeCun, Y.; Boser, B.; Denker, J.S.; et al. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551.
- 34.
Ioffe, S. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167.
- 35.
He, K.; Zhang, X.; Ren, S.; et al. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
- 36.
Girshick, R.; Donahue, J.; Darrell, T.; et al. Region-Based Convolutional Networks for Accurate Object Detection and Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158.
- 37.
Redmon, J. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.
- 38.
Redmon, J.; Farhadi, A. YOLO9000: better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
- 39.
Farhadi, A.; Redmon, J. Yolov3: An incremental improvement. In Computer Vision and Pattern Recognition; Springer: Berlin/Heidelberg, Germany, 2018; Volume 1804, pp. 1–6.
- 40.
Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
- 41.
Girshick, R. Fast r-cnn. arXiv 2015, arXiv:1504.08083.
- 42.
Ren, S.; He, K.; Girshick, R.; et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149.
- 43.
Duan, K.; Bai, S.; Xie, L.; et al. Centernet: Keypoint triplets for object detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6569–6578.
- 44.
Tian, Z.; Shen, C.; Chen, H.; et al. FCOS: A simple and strong anchor-free object detector. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 1922–1933.
- 45.
Dosovitskiy, A. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.
- 46.
Carion, N.; Massa, F.; Synnaeve, G.; et al. End-to-end object detection with transformers. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2020; pp. 213–229.
- 47.
Zhao, Y.; Lv, W.; Xu, S.; et al. Detrs beat yolos on real-time object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 16965–16974.
- 48.
Iordache, M.D.; Mantas, V.; Baltazar, E.; et al. A machine learning approach to detecting pine wilt disease using airborne spectral imagery. Remote. Sens. 2020, 12, 2280.
- 49.
Yu, R.; Huo, L.; Huang, H.; et al. Early detection of pine wilt disease tree candidates using time-series of spectral signatures. Front. Plant Sci. 2022, 13, 1000093.
- 50.
Wu, W.; Zhang, Z.; Zheng, L.; et al. Research progress on the early monitoring of pine wilt disease using hyperspectral techniques. Sensors 2020, 20, 3729.
- 51.
Zhou, Z.; Zhang, Y.; Gu, Z.; et al. Deep learning approaches for object recognition in plant diseases: A review. Intell. Robot. 2023, 3, 514–537.
- 52.
Deng, X.; Tong, Z.; Lan, Y.; et al. Detection and location of dead trees with pine wilt disease based on deep learning and UAV remote sensing. AgriEngineering 2020, 2, 294–307.
- 53.
Oide, A.H.; Nagasaka, Y.; Tanaka, K. Performance of machine learning algorithms for detecting pine wilt disease infection using visible color imagery by UAV remote sensing. Remote. Sens. Appl. Soc. Environ. 2022, 28, 100869.
- 54.
Xie, W.; Wang, H.; Liu, W.; et al. Early-Stage Pine Wilt Disease Detection via Multi-Feature Fusion in UAV Imagery. Forests 2024, 15, 171.
- 55.
Jocher, G.; Chaurasia, A.; Stoken, A.; et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation. 2022. Available online: https://github.com/ultralytics/yolov5 (accessed on 10 May 2025).
- 56.
Wu, Z.; Jiang, X. Extraction of pine wilt disease regions using UAV RGB imagery and improved mask R-CNN models fused with ConvNeXt. Forests 2023, 14, 1672.
- 57.
Zhang, N.; Chai, X.; Li, N.; et al. Applicability of UAV-based optical imagery and classification algorithms for detecting pine wilt disease at different infection stages. GIScience Remote. Sens. 2023, 60, 2170479.
- 58.
Zhou, Z.; Yang, X. Pine wilt disease detection in UAV-CAPTURED images. Int. J. Robot. Autom 2022, 37, 37–43.
- 59.
Huang, X.; Gang, W.; Li, J.; et al. Extraction of pine wilt disease based on a two-stage unmanned aerial vehicle deep learning method. J. Appl. Remote. Sens. 2024, 18, 014503–014503.
- 60.
Lin, T.Y.; Dollr, P.; Girshick, R.; et al. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.
- 61.
Sun, W.; Dai, L.; Zhang, X.; et al. RSOD: Real-time small object detection algorithm in UAV-based traffic monitoring. Appl. Intell. 2021, 52, 8448–8463.
- 62.
Ye, T.; Qin, W.; Li, Y.; et al. Dense and Small Object Detection in UAV-Vision Based on a Global-Local Feature Enhanced Network. IEEE Trans. Instrum. Meas. 2022, 71, 1–13.
- 63.
Zhao, H.; Zhang, H.; Zhao, Y. Yolov7-sea: Object detection of maritime uav images based on improved yolov7. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 2–7 January 2023, pp. 233–238.
- 64.
Yang, L.; Zhang, R.Y.; Li, L.; et al. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks. In Proceedings of the 38th International Conference on Machine Learning, Virtual Event, 18–24 July 2021; Volume 139, pp. 11863–11874.
- 65.
Ni, J.; Zhu, S.; Tang, G.; et al. A Small-Object Detection Model Based on Improved YOLOv8s for UAV Image Scenarios. Remote. Sens. 2024, 16, 2465.
- 66.
Wang, F.; Wang, H.; Qin, Z.; et al. UAV target detection algorithm based on improved YOLOv8. IEEE Access 2023, https://doi.org/10.1109/ACCESS.2023.3325677.
- 67.
Zhang, Y.; Zuo, Z.; Xu, X.; et al. Road damage detection using UAV images based on multi-level attention mechanism. Autom. Constr. 2022, 144, 104613.
- 68.
Xu, G.; Liao, W.; Zhang, X.; et al. Haar wavelet downsampling: A simple but effective downsampling module for semantic segmentation. Pattern Recognit. 2023, 143, 109819.
- 69.
Finder, S.E.; Amoyal, R.; Treister, E.; et al. Wavelet Convolutions for Large Receptive Fields. arXiv 2024, arXiv:2407.05848.
- 70.
Porwik, P.; Lisowska, A. The Haar-wavelet transform in digital image processing: its status and achievements. Mach. Graph. Vis. 2004, 13, 79–98.
- 71.
Chen, J.; Kao, S.h.; He, H.; et al. Run, don’t walk: chasing higher FLOPS for faster neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 12021–12031.
- 72.
Woo, S.; Park, J.; Lee, J.Y.; et al. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.
- 73.
Liu, S.; Qi, L.; Qin, H.; et al. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.
- 74.
Wang, C.; He, W.; Nie, Y.; et al. Gold-YOLO: Efficient object detector via gather-and-distribute mechanism. Adv. Neural Inf. Process. Syst. 2024, 36, 51094–51112.
- 75.
Dharejo, F.A.; Deeba, F.; Zhou, Y.; et al. TWIST-GAN: Towards wavelet transform and transferred GAN for spatio-temporal single image super resolution. ACM Trans. Intell. Syst. Technol. 2021, 12, 1–20.
- 76.
Yang, H.H.; Yang, C.H.H.; Wang, Y.C.F. Wavelet channel attention module with a fusion network for single image deraining. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Virtual, 25–28 October 2020; pp. 883–887.
- 77.
Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
- 78.
He, K.; Gkioxari, G.; Dollr, P.; et al. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.
- 79.
Zhang, H.; Cisse, M.; Dauphin, Y.N.; et al. mixup: Beyond empirical risk minimization. arXiv 2017, arXiv:1710.09412.
- 80.
Jocher, G.; Qiu, J.; Chaurasia, A. Ultralytics YOLO (Version 8.0.0). Available online: https://github.com/ultralytics/ultralytics (accessed on 5 May 2025).
- 81.
Loshchilov, I. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
- 82.
Digital Research Alliance of Canada. Digital Research Alliance of Canada, n.d. Available online: https://alliancecan.ca/en (accessed on 3 October 2024).
- 83.
Gevorgyan, Z. SIoU Loss: More Powerful Learning for Bounding Box Regression. arXiv 2022, arXiv:2205.12740.
- 84.
Lin, T.Y.; Maire, M.; Belongie, S.; et al. Microsoft coco: Common objects in context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part V 13, pp. 740–755.
- 85.
Cai, Z.; Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6154–6162.
- 86.
Li, C.; Li, L.; Jiang, H.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976.
- 87.
Xu, K.; Qin, M.; Sun, F.; et al. Learning in the frequency domain. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1740–1749.
- 88.
Selvaraju, R.R.; Cogswell, M.; Das, A.; et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 618–626.