- 1.
Mei, Z. 3D Image Analysis of Sports Technical Features and Sports Training Methods Based on Artificial Intelligence. J. Test. Eval. 2022, 51, 189–200.
- 2.
Kulkarni, K.M.; Shenoy, S. Table Tennis Stroke Recognition Using Two-Dimensional Human Pose Estimation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Nashville, TN, USA, 19–25 June 2021; pp. 4571–4579.
- 3.
Kwon, S.; Letuchy, E.M.; Levy, S.M.; et al. Youth Sports Participation Is More Important among Females than Males for Predicting Physical Activity in Early Adulthood: Iowa Bone Development Study. Int. J. Environ. Res. Public Health 2021, 18, 1328.
- 4.
Zhang, J.; Tao, D. Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things. IEEE Internet Things J. 2021, 8, 7789–7817.
- 5.
Andriluka, M.; Iqbal, U.; Insafutdinov, E.; et al. PoseTrack: A Benchmark for Human Pose Estimation and Tracking. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.
- 6.
Shotton, J.; Fitzgibbon, A.; Cook, M.; et al. Real-time human pose recognition in parts from single depth images. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1297–1304.
- 7.
Girdhar, R.; Gkioxari, G.; Torresani, L.; et al. Detect-and-Track: Efficient Pose Estimation in Videos. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.
- 8.
Andriluka, M.; Pishchulin, L.; Gehler, P.; et al. 2D Human Pose Estimation: New Benchmark and State of the Art Analysis. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014.
- 9.
Chen, Y.; Shen, C.; Wei, X.-S.; et al. Adversarial PoseNet: A Structure-Aware Convolutional Network for Human Pose Estimation. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.
- 10.
Fischler, M.A.; Elschlager, R.A. The Representation and Matching of Pictorial Structures. IEEE Trans. Comput. 1973, 100, 67–92.
- 11.
Forsyth, D. Object Detection with Discriminatively Trained Part-Based Models. Computer 2014, 47, 6–7.
- 12.
Zhang, C.-L.; Li, Y.; Wu, J. Weakly supervised foreground learning for weakly supervised localization and detection. Pattern Recognit. 2023, 137, 109279.
- 13.
Patel, C.I.; Labana, D.; Pandya, S.; et al. Histogram of Oriented Gradient-Based Fusion of Features for Human Action Recognition in Action Video Sequences. Sensors 2020, 20, 7299.
- 14.
Luo, M.; Du, B.; Zhang, W.; et al. Fleet Rebalancing for Expanding Shared e-Mobility Systems: A Multi-Agent Deep Reinforcement Learning Approach. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3868–3881.
- 15.
Qiao, Y.; Li, K.; Lin, J.; et al. Robust Domain Generalization for Multi-modal Object Recognition. In Proceedings of the 2024 5th International Conference on Artificial Intelligence and Electromechanical Automation (AIEA), Shenzhen, China, 14–16 June 2024; pp. 392–397.
- 16.
Yang, Y.; Yang, R.; Pan, L.; et al. A lightweight deep learning algorithm for inspection of laser welding defects on safety vent of power battery. Comput. Ind. 2020, 123, 103306.
- 17.
Chen, Y.; Zhang, F.; Wang, G.; et al. An Active Contour Model Based on Fuzzy Superpixel Centers and Nonlinear Diffusion Filter for Instance Segmentation. IEEE Trans. Instrum. Meas. 2025, 74. https://doi.org/10.1109/TIM.2025.3573369
- 18.
Cheng, C.; Zhang, H.; Sun, Y.; et al. A cross-platform deep reinforcement learning model for autonomous navigation without global information in different scenes. Control Eng. Pract. 2024, 150, 105991.
- 19.
Cao, J.; Gao, Y.; Wang, C. A Novel Four-Step Algorithm for Detecting a Single Circle in Complex Images. Sensors 2023, 23, 9030.
- 20.
Dang, Q.; Yin, J.; Wang, B.; et al. Deep learning based 2D human pose estimation: A survey. Tsinghua Sci. Technol. 2019, 24, 663–676.
- 21.
Wang, G.; Zhang, F.; Chen, Y.; et al. An Active Contour Model Based on Local Pre-piecewise Fitting Bias Corrections for Fast and Accurate Segmentation. IEEE Trans. Instrum. Meas. 2023, 72, 1–13.
- 22.
Munea, T.L.; Jembre, Y.Z.; Weldegebriel, H.T.; et al. The Progress of Human Pose Estimation: A Survey and Taxonomy of Models Applied in 2D Human Pose Estimation. IEEE Access 2020, 8, 133330–133348.
- 23.
Wang, G.; Li, Z.; Weng, G.; et al. An overview of industrial image segmentation technology using deep learning models. Intell. Robot. 2025, 5, 143–180.
- 24.
Gao, Y.; Cheng, X.; Chen, Y.; et al. Data-driven propagation and recovery of supply-demand imbalance in a metro system. Control Eng. Pract. 2025, 161, 106339.
- 25.
Cao, Z.; Hidalgo, G.; Simon, T.; et al. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 172–186.
- 26.
Wu, P.; Tian, E.; Tao, H.; et al. Transfer Learning-Motivated Intelligent Fault Diagnosis Framework for Cross-Domain Knowledge Distillation Learning Systems. Neural Netw. 2025, 190, 107699.
- 27.
Sun, K.; Xiao, B.; Liu, D.; et al. Deep High-Resolution Representation Learning for Human Pose Estimation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 5686–5696.
- 28.
Li, Z.; Zhang, F; Wang, G.; et al. An Active Contour Model Based onKullback-Leibler Divergence and Morphologyfor lmage Segmentation with Edge Leakage. Signal Process. 2026, 238, 110143.
- 29.
Latreche, A.; Kelaiaia, R.; Chemori, A.; et al. Reliability and validity analysis of MediaPipe-based measurement system for some human rehabilitation motions. Measurement 2023, 214, 112826.
- 30.
Konstantinov, A.V.; Utkin, L.V. Interpretable machine learning with an ensemble of gradient boosting machines. Knowl.-Based Syst. 2021, 222, 106993.