2511002287
  • Open Access
  • Review

Multi-Sensor Fusion and Data Analytics for Power Cable Condition Monitoring and Predictive Maintenance

  • Xin Zhou 1,*,   
  • Yanhao Li 1,   
  • Feng Zhong 1,   
  • Wei Han 1,   
  • Yunfei Han 1,   
  • Yanman Chen 1,   
  • Lvwen Huang 2,*

Received: 21 Oct 2025 | Revised: 07 Nov 2025 | Accepted: 14 Nov 2025 | Published: 12 Dec 2025

Abstract

Power cables are critical infrastructure for electric power transmission, and their reliability directly affects supply security. The expansion of cable deployment has increased the difficulty of condition monitoring, while more complex operating environments intensify the challenge of early identification of insulation aging and latent defects. This paper systematically analyzes power-cable condition-monitoring and intelligent operation-and-maintenance (O&M) technologies, comparing electrical monitoring methods—such as partial discharge, sheath current, and dielectric loss—with non-electrical parameter monitoring of temperature, humidity, and strain, thereby clarifying the performance characteristics and applicable scopes of each approach. We also examine O&M methods including intelligent inspection, supervisory control and data acquisition (SCADA) system integration, and data-fusion algorithms. The results show that establishing a multi-parameter collaborative sensing framework, platform-based integration, and an artificial intelligence (AI)-driven O&M system enables accurate condition assessment and predictive maintenance of cables. This study provides a technical pathway for transitioning power-cable O&M from periodic maintenance to predictive maintenance and offers practical value for enhancing grid reliability.

References 

  • 1.

    Electric Power Research Institute. Underground Cable Failures. Available online: https://distribution.epri.com/underground/public/failures (accessed on 7 May 2025).

  • 2.

    Xie, Y.; You, P.; Wu, G.; et al. Accurate Identification Partial Discharge of Cable Termination for High-Speed Trains Based on S-Transform and Two-Dimensional Convolutional Network Algorithm. Sensors 2024, 24, 7602.

  • 3.

    Wang, F.; Wang, N.; Zhong, L.; et al. Research on Recognition of Multiple Partial Discharge Sources in Switchgear Based on the Combination of GST-TEV and ResNet-18. IET Sci. Meas. Technol. 2025, 19, 70003.

  • 4.

    Sikorski, W.; Wielewski, A. Low-Cost Online Partial Discharge Monitoring System for Power Transformers. Sensors 2023, 23, 3405.

  • 5.

    Fikri, M.; Abdul-Malek, Z. Partial discharge diagnosis and remaining useful lifetime in XLPE extruded power cables under DC voltage: A review. Electr. Eng. 2023, 105, 4195–4212.

  • 6.

    Nahidul Islam, S.M.; Ahmad, S.; Prodhan, M.M.; et al. An Intelligent SCADA System for Power Distribution Network Cable Fault Detection with Real-Time Monitoring and Autonomous Maintenance. Int. Conf. Robot. Electrical Signal Process. Tech. 2025, 23, 372–376.

  • 7.

    Zhang, W.; Song, Y.; Wu, X.; et al. Detecting Partial Discharge in Cable Joints Based on Implanting Optical Fiber Using MZ-Sagnac Interferometry. Sensors 2025, 25, 3166.

  • 8.

    Zheng, W.; Qian, Y.; Yang, N.; et al. Research on partial discharge localization in XLPE cable accessories using multi-sensor joint detection technology. Przegląd Elektrotechniczny 2011, 87, 84–88.

  • 9.

    Govindarajan, S.; Morales, A.; Ardila-Rey, J.A.; et al. A review on partial discharge diagnosis in cables: Theory, techniques, and trends. Meas. J. Int. Meas. Confed. 2023, 216, 112882.

  • 10.

    Ortego, J.; Garnacho, F.; Álvarez, F.; et al. Locating Insulation Defects in HV Substations Using HFCT Sensors and AI Diagnostic Tools. Sensors 2024, 24, 5312.

  • 11.

    Kaziz, S.; Said, M.H.; Imburgia, A.; et al. Radiometric Partial Discharge Detection: A Review. Energies 2023, 16, 1978.

  • 12.

    Kaziz, S.; Romano, P.; Imburgia, A.; et al. PCB-Based Planar Inductive Loops for Partial Discharges Detection in Power Cables. Sensors 2023, 23, 290.

  • 13.

    Xia, R.; Zhao, Y.; Ouyang, B.; et al. Study of Capacitive Coupling Sensor Fused With High Voltage XLPE Cable Joint. Front. Energy Res. 2022, 10, 2022.

  • 14.

    Chan, J.Q.; Raymond, W.J.K.; Illias, H.A.; et al. Artial Discharge Localization Techniques: A Review of Recent Progress. Energies 2023, 16, 2863.

  • 15.

    Miao, W.; Liu, H.; Song, C.; et al. Double-End Location Technology of Partial Discharge in Cables Based on Frequency-Domain Reflectometry. Sensors 2025, 25, 4710.

  • 16.

    Mier, C.; Rodrigo Mor, A.; Vaessen, P. A directional coupler for partial discharge measurements in gas-insulated substations. Meas. J. Int. Meas. Confed. 2024, 225, 113996.

  • 17.

    Hao, Y.; Chen, Y.; Chen, Y.; et al. Partial discharge detection using the fiber-optic Mach–Zehnder interferometer system for XLPE cables. Electr. Eng. 2022, 104, 2133–2140.

  • 18.

    Yousuf, W.B.; Khan, T.M.R.; Tariq, S.T.; et al. Remaining Useful Life Prediction of Aerial Bundled Cables in Coastal Areas Using Thermal and Corrosion Degradation Models. IEEE Trans. Power Deliv. 2022, 37, 2543–2550.

  • 19.

    Gao, D.; Ma, G.; Qin, W.; et al. A Relative Humidity Sensor Based on Non-Adiabatic Tapered Optical Fiber for Remote Measurement in Power Cable Tunnel. IEEE Trans. Instrum. Meas. 2022, 71, 9505608.

  • 20.

    Zhao, H.; Zhang, Z.; Yang, Y.; et al. Real-time reconstruction of temperature field for cable joints based on inverse analysis. Int. J. Electr. Power Energy Syst. 2023, 144, 108573.

  • 21.

    Zhu, G.; Zhou, K.; Lu, L.; et al. Online Monitoring of Power Cables Tangent Delta Based on Low-Frequency Signal Injection Method. IEEE Trans. Instrum. Meas. 2021, 70, 1–8.

  • 22.

    Kim, H.; Lee, M.; Jung, W.; et al. Temperature monitoring techniques of power cable joints in underground utility tunnels using a fiber Bragg grating. ICT Express 2022, 8, 626–632.

  • 23.

    Zhao, S.; Wang, W.; Qi, Z.; et al. Partial Discharge Measurement of GIS With Damped AC (DAC) Voltage: Case Study for the Particle on Insulator. IEEE Trans. Power Deliv. 2023, 38, 1665–1673.

  • 24.

    Navarrete-Rajadel, P.; Llovera-Segovia, P.; Fuster-Roig, V.; et al. A Sensor for Multi-Point Temperature Monitoring in Underground Power Cables. Sensors 2025, 25, 5490.

  • 25.

    Molęda, M.; Małysiak-Mrozek, B.; Ding, W.; et al. From Corrective to Predictive Maintenance—A Review of Maintenance Approaches for the Power Industry. Sensors 2023, 23, 5970.

  • 26.

    Chambela, P.; Mushi, A. Comparison of On-Line Partial Discharge Detection Techniques for High Voltage Power Cable Joints and Terminations. Tanzan. J. Eng. Technol. 2023, 42, 146–154.

  • 27.

    Wu, C.; Zhou, Y.; Jiang, X.; et al. Research and Applications of the Key Technology of Intelligent Operation and Maintenance System Architecture for Transmission Power Cables. In 2018 Third International Conference on Security of Smart Cities, Industrial Control System and Communications (SSIC), Shanghai, China, 18–19 October 2018; pp. 1–5.

  • 28.

    Tao, J.; Rehman, S.U.; Ali, R.; et al. Advancement and challenges: A review of power cable aging monitoring and diagnostic techniques. Renew. Sustain. Energy Rev. 2025, 222, 115970.

  • 29.

    Wu, T.; Wang, L.; Xu, X.; et al. An intelligent fault detection algorithm for power transmission lines based on multi-scale fusion. Mini-Invasive Surg. 2025, 5, 74–87.

  • 30.

    Alhussein, A.N.D.; Qaid, M.R.T.M.; Agliullin, T.; et al. Fiber Bragg Grating Sensors: Design, Applications, and Comparison with Other Sensing Technologies. Sensors 2025, 25, 2289.

  • 31.

    Yang, L.; Hu, Z.; Hao, Y.; et al. Internal temperature measurement and conductor temperature calculation of XLPE power cable based on optical fiber at different radial positions. Eng. Fail. Anal. 2021, 125, 105407.

  • 32.

    Wu, J.; Rodrigo Mor, A.; van Nes, P.V.M.; et al. Measuring method for partial discharges in a high voltage cable system subjected to impulse and superimposed voltage under laboratory conditions. Int. J. Electr. Power Energy Syst. 2020, 115, 105489.

  • 33.

    Niasar, M.G.; Wang, X.; Kiiza, R.C. Review of Partial Discharge Activity Considering Very-Low Frequency and Damped Applied Voltage. Energies 2021, 14, 440.

  • 34.

    Duan, H.; Shi, F.; Gao, B.; et al. A novel real-time intelligent detector for monitoring UAVs in live-line operation on 10 kV distribution networks. Intell. Robot. 2025, 5, 70–87.

  • 35.

    Das, A.K.; Haque, N.; Pradhan, A.K.; et al. Estimation of Moisture Content in XLPE Insulation in Medium Voltage Cable by Frequency Domain Spectroscopy. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1811–1819.

  • 36.

    Zhao, X.; Liu, G.; Li, L. Importance-driven denial-of-service attack strategy design against remote state estimation in multi-agent intelligent power systems. Intell. Robot. 2024, 4, 44–55.

  • 37.

    Liu, Y.; Zhou, A.; Yuan, L. Multifunctional fiber-optic sensor, based on helix structure and fiber Bragg gratings, for shape sensing. Opt. Laser Technol. 2021, 143, 107327.

  • 38.

    Yue, J.; Lang, J.; Feng, R. An adaptive feature fusion strategy using dual-layer attention and multi-modal deep reinforcement learning for all-media similarity search. Discov. Artif. Intell. 2025, 5, 71.

  • 39.

    Xia, C.; Ren, M.; Wang, B.; et al. Infrared thermography-based diagnostics on power equipment: State-of-the-art. High Volt. 2021, 6, 387–407.

  • 40.

    Karapanagiotis, C.; Krebber, K. Machine Learning Approaches in Brillouin Distributed Fiber Optic Sensors. Sensors 2023, 23, 6187.

  • 41.

    Bhatti, M.A.; Song, Z.; Bhatti, U.A.; et al. AIoT-driven multi-source sensor emission monitoring and forecasting using multi-source sensor integration with reduced noise series decomposition. J. Cloud Comput. 2024, 13, 65.

  • 42.

    Pan, T.; Yu, Z.; Huang, F.; et al. Flexible Humidity Sensor with High Sensitivity and Durability for Respiratory Monitoring Using Near-Field Electrohydrodynamic Direct-Writing Method. ACS Appl. Mater. Interfaces 2023, 15, 28248–28257.

  • 43.

    Borkotoky, S.S.; Schmidt, J.F.; Schilcher, U.; et al. Reliability and Energy Consumption of LoRa With Bidirectional Traffic. IEEE Commun. Lett. 2021, 25, 3743–3747.

  • 44.

    Clément, P.; Gabet, R.; Lanticq, V.; et al. B-OTDR Solution for Independent Temperature and Strain Measurement in a Single Acquisition. J. Light. Technol. 2021, 39, 6013–6020.

  • 45.

    Wei, Y.; Liu, M.; Li, X.; et al. Effect of temperature on electric-thermal properties of semi-conductive shielding layer and insulation layer for high-voltage cable. High Volt. 2021, 6, 805–812.

  • 46.

    Gu, X.; Shang, J.; Shen, C. Power cable monitoring method based on UHF-RFID and deep learning in edge computing environment. J. Eng. 2024, 7, 12407.

Share this article:
How to Cite
Zhou, X.; Li, Y.; Zhong, F.; Han, W.; Han, Y.; Chen, Y.; Huang, L. Multi-Sensor Fusion and Data Analytics for Power Cable Condition Monitoring and Predictive Maintenance. Sensors and AI 2025, 1 (1), 61–70.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.