2509001381
  • Open Access
  • Article

Intelligent Control of Compensating Devices for Power Quality Enhancement in Radial Network

  • Imran Ahmad Quadri 1,*,   
  • Nayan Kumar 2,   
  • Shahzad Ahsan 3

Received: 05 Sep 2025 | Revised: 19 Sep 2025 | Accepted: 22 Sep 2025 | Published: 28 Sep 2025

Abstract

In order to enhance the operational efficacy of distributionnetworks (DPNs) across technical, economic and environmental aspects within a real-time operational framework, meticulous regulation of reactive power is imperative. In the present study, a Comprehensive Teaching-Learning based Optimization (CTLBO) algorithm is employed for network reconfiguration (NR) and optimal allocation of Distribution Static Synchronous Compensators (DSTATCOMs) for single-objective along with 24-hour practical load profiles in the IEEE 33-bus and 69-bus radial distribution systems (RDSs). Several case studies demonstrate that simultaneous NR and DSTATCOM allocation is the most effective solution for reduction of system losses, operational costs and emission. The results further demonstrates the superiority in terms of convergence characteristics, solution robustness and global optimality of the CTLBO algorithm under complex , multi-criteria constraints for NR and DSTATCOM allocation in RDS against established bio-inspired metaheuristics such as the Immune Algorithm (IA), Bat Algorithm (BA) and Bacterial Foraging Optimization Algorithm (BFOA).

References 

  • 1.
    Kanwar, N.; Gupta, N.; Niazi, K.R.; et al. Simultaneous allocation of distributed energy resource using improved particle swarm optimization. Appl. Energy 2017, 185, 1684–1693.
  • 2.
    Adebiyi, O.W.; Okelola, M.O.; Salimon, S.A. Multi-objective Optimal Allocation of Renewable Energy Distributed Generations and Shunt Capacitors in Radial Distribution System using Corona Virus Herd Optimization. Majlesi J. Electr. Eng. 2023, 17. https://doi.org/10.30486/mjee.2023.1978728.1068.
  • 3.
    Santos, S.F.; Fitiwi, D.Z.; Cruz, M.R.M.; et al. Impacts of optimal energy storage deployment and network reconfiguration on renewable integration level in distribution systems. Appl. Energy 2017, 185, 44–55.
  • 4.
    El-Fergany, A.A. Reviews, Challenges, and Insights on Computational Methods for Network Reconfigurations in Smart Electricity Distribution Networks. Arch. Comput. Methods Eng. 2024, 31, 1233–1253. https://doi.org/10.1007/s11831-023-10007-0.
  • 5.
    Lotfi, H.; Hajiabadi, M.E.; Parsadust, H. Power Distribution Network Reconfiguration Techniques: A Thorough review. Sustainability 2024, 16, 10307. https://doi.org/10.3390/su162310307.
  • 6.
    Ampimah, B.C.; Sun, M.; Han, D.; et al. Optimizing sheddable and shiftable residential electricity consumption by incentivized peak and off-peak credit function approach. Appl. Energy 2018, 210, 1299–1309.
  • 7.
    Gbadega, P.A.; Balogun, O.A. An Islanding Detection and Load Curtailment Strategy for Radial Distribution Networks Using Squid Game Optimizer Algorithm. In Proceedings of the 2024 International Conference on Advanced Mechatronic Systems (ICAMechS), Kusatsu, Japan, 26–30 November 2024; pp. 268–273.
  • 8.
    Kazemi, M.A.; Sedighizadeh, M.; Mirzaei, M.J.; et al. Optimal siting and sizing of distribution system operator owned EV parking lots. Appl. Energy 2016, 179, 1176–1184.
  • 9.
    Vutla, V.; Chintham, V. Multi-objective optimal planning of Rapid Charging Stations, Distributed Generators, and D-STATCOM in coupled networks considering waiting time. Energy Sources Part A Recovery Util. Environ. Eff. 2025, 47, 526–546. https://doi.org/10.1080/15567036.2024.2442060.
  • 10.
    Shewale, A.; Mokhade, A.; Lipare, A.; et al. Efficient techniques for residential appliances scheduling in smart homes for energy management using multiple knapsack problem. Arab. J. Sci. Eng. 2023, 49, 3793–3813.
  • 11.
    Elkholy, A.M.; Panfilov, D.I.; ELGebaly, A.E. Comparative analysis of FACT devices for optimal improvement of power quality in unbalanced distribution systems. Sci. Rep. 2025, 15, 2672. https://doi.org/10.1038/s41598-024-57331-4.
  • 12.
    Bollen, M.H.J. Understanding Power Quality Problems: Voltage Sags and Interruptions; Wiley-IEEE Press: Hoboken, NJ, USA, 2000.
  • 13.
    Farhoodnea, M.; Mohamed, A.; Shareef, H.; et al. Optimum DSTATCOM placement using firefly algorithm for power quality enhancement. In Proceedings of the 2013 IEEE 7th International Power Engineering and Optimization Conference (PEOCO), Langkawi, Malaysia, 3–4 June 2013; pp. 98–102.
  • 14.
    Shahnia, F.; Chandrasena, R.P.S.; Ghosh, A.; et al. Application of DSTATCOM for surplus power circulation in MV and LV distribution networks with single-phase distributed energy resources. In Proceedings of the 2014 IEEE PES General Meeting | Conference & Exposition, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5.
  • 15.
    Chen, C.S.; Lin, C.H.; Hsieh, W.L.; et al. Enhancement of PV Penetration with DSTATCOM in Taipower Distribution System. In IEEE Transactions on Power Systems; IEEE: New York, NY, USA, 2013; pp. 1560–1567.
  • 16.
    da Silva, I.C.; Carneiro, S.; de Oliveira, E.J.; et al. A Heuristic Constructive Algorithm for Capacitor Placement on Distribution Systems. In IEEE Transactions on Power Systems; IEEE: New York, NY, USA, 2008; pp. 1619–1626.
  • 17.
    Das, D. Optimal placement of capacitors in radial distribution system using a Fuzzy-GA method. Int. J. Electr. Power Energy Syst. 2008, 30, 361–367.
  • 18.
    Haldar, V.; Chakraborty, N. Power loss minimization by optimal capacitor placement in radial distribution system using modified cultural algorithm. Int. Trans. Electr. Energy Syst. 2015, 25, 54–71.
  • 19.
    Kanwar, N.; Gupta, N.; Swarnkar, A.; et al. New Sensitivity based Approach for Optimal Allocation of Shunt Capacitors in Distribution Networks Using PSO. Energy Procedia 2015, 75, 1153–1158.
  • 20.
    Jordehi, A.R. Brainstorm optimisation algorithm (BSOA): An efficient algorithm for finding optimal location and setting of facts devices in electric power systems. Int. J. Electr. Power Energy Syst. 2015 69, 48–57.
  • 21.
    Lehn, P.W. A benchmark system for simulation of the DSTATCOM. In Proceedings of the 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309), New York, NY, USA, 27–31 January 2002; pp. 496–498.
  • 22.
    Acha, E.; Fuerte-Esquivel, C.R.; Ambriz-Perez, H.; et al. FACTS modeling and simulation in power networks. John Wiley & Sons Inc.: Hoboken, NJ, USA, 2004.
  • 23.
    Devi, S.; Geethanjali, M. Optimal location and sizing determination of Distributed Generation and DSTATCOM using Particle Swarm Optimization algorithm. Int. J. Electr. Power Energy Syst. 2014, 62, 562–570.
  • 24.
    Majumder, R. Reactive power compensation in single-phase operation of the microgrid. IEEE Trans. Ind. Electron. 2013, 60, 1403–1416.
  • 25.
    Quadri, I.A.; Bhowmick, S.; Joshi, D. A hybrid teaching–learning-based optimization technique for optimal DG sizing and placement in radial distribution systems. Soft Comput. 2019, 23, 9899–9917. https://doi.org/10.1007/s00500-018-3544-8.
  • 26.
    Quadri, I.A.; Bhowmick, S. A hybrid technique for simultaneous network reconfiguration and optimal placement of distributed generation resources. Soft Comput. 2020, 24, 11315–11336. https://doi.org/10.1007/s00500-019-04597-w.
  • 27.
    Sirjani, R.; Jordehi, A.R. Optimal placement and sizing of distribution static compensator (DSTATCOM) in electric distribution networks: A review. Renew. Sustain. Energy Rev. 2017, 77, 688–694.
  • 28.
    Mokhtari, G.; Nourbakhsh, G.; Zare, F.; et al. A new distributed control strategy to coordinate multiple dstatcoms in LV network. In Proceedings of the 2013 4th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Rogers, AR, USA, 8–11 July 2013; pp. 1–5.
  • 29.
    Brown, R.E. Electric Power Distribution Reliability; CRC Press: Boca Raton, FL, USA, 2008.
  • 30.
    Bollen, M.H. Understanding Power Quality Problems; IEEE Press: New York, NY, USA, 2000.
  • 31.
    Gupta, A.R.; Kumar, A. Optimal placement of DSTATCOM in distribution network using new sensitivity index with probabilistic load models. In Proceedings of the 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS), Chandigarh, India, 21–22 December 2015; pp. 1–6.
  • 32.
    Hussain, S.M.S.; Subbaramiah, M.M. An analytical approach for optimal location of DSTATCOM in radial distribution system. In Proceedings of the 2013 International Conference on Energy Efficient Technologies for Sustainability, Nagercoil, India, 10–12 April 2013; pp. 1365–1369.
  • 33.
    Bagherinasab, A.; Zadehbagheri, M.; Khalid, S.A.; et al. Optimal placement of DSTATCOM Using hybrid genetic and ant colony algorithm to losses reduction. Int. J. Appl. Power Eng. 2013, 2, 53–60.
  • 34.
    Gupta, A.R.; Kumar, A. Energy Saving Using DSTATCOM Placement in Radial Distribution System under Reconfigured Network. Energy Procedia 2016, 90, 124–136.
  • 35.
    Suhail, M.; Hussain, S. Identification of weak buses using Voltage Stability Indicator and its voltage profile improvement by using DSTATCOM in radial distribution systems. IOSR J. Electr. Electron. Eng. 2018, 2, 17–23.
  • 36.
    Gupta, A.R.; Kumar, A. Optimal placement of DSTATCOM using sensitivity approaches in mesh distribution system with time variant load models under load growth. Ain Shams Eng. J. 2018, 9, 783–799.
  • 37.
    Taher, S.A.; Afsari, S.A. Optimal location and sizing of DSTATCOM in distribution systems by the immune algorithm. Int. J. Electr. Power Energy Syst. 2014, 60, 34–44.
  • 38.
    Jazebi, S.; Hosseinian, S.; Vahidi, B. DSTATCOM allocation in distribution networks considering reconfiguration using differential evolution algorithm. Energy Convers. Manag. 2011, 52, 2777–2783.
  • 39.
    Salman, N.; Mohamed, A.; Shareef, H. Reliability improvement in distribution systems by optimal placement of DSTATCOM using binary gravitational search algorithm. Przegląd Elektrotechniczny 2012, 88, 295–299.
  • 40.
    Kanwar, N.; Gupta, N.; Niazi, K.R.; et al. Improved Cat Swarm Optimization for Simultaneous Allocation of DSTATCOM and DGs in Distribution Systems. J. Renew. Energy 2015, 1, 189080.
  • 41.
    Tolabi, H.B.; Ali, M.H.; Rizwan, M. Simultaneous reconfiguration, optimal placement of DSTATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach. IEEE Trans. Sustain. Energy 2015, 6, 210–218.
  • 42.
    Yuvaraj, T.; Devabalaji, K.; Ravi, K. Optimal placement and sizing of DSTATCOM using Harmony Search algorithm. Energy Procedia 2015, 79, 759–765.
  • 43.
    Chabok, B.S.; Ashouri, A. Optimal placement of DSTATCOMs into the radial distribution networks in the presence of distributed generations. Am. J. Electr. Electron. Eng. 2016, 4, 40–48.
  • 44.
    Yaghoobi, J.; Islam, M.; Mithulananthan, N. Analytical approach to assess the loadability of unbalanced distribution grid with rooftop PV units. Appl. Energy 2018, 211, 358–367.
  • 45.
    Hung, D.Q.; Mithulananthan, N. Loss reduction and loadability enhancement with DG: A dual-index analytical approach. Appl. Energy 2014, 115, 233–241.
  • 46.
    Luo, L.; Gu, W.; Zhang, X.P.; et al. Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM). Appl. Energy 2018, 210, 1092–1100.
  • 47.
    Quadri, I.A.; Bhowmick, S.; Joshi, D. Multi-objective approach to maximise loadability of distribution networks by simultaneous reconfiguration and allocation of distributed energy resources. IET Gener. Transm. Distrib. 2018, 12, 5700–5712. https://doi.org/10.1049/iet-gtd.2018.5618.
  • 48.
    Braslavsky, J.H.; Wall, J.R.; Reedman, L.J. Optimal distributed energy resources and the cost of reduced greenhouse gas emissions in a large retail shopping centre. Appl. Energy 2015, 155, 120–130.
  • 49.
    Gözel, T.; Hocaoglu, M.H. An analytical method for the sizing and siting of distributed generators in radial systems. Electr. Power Syst. Res. 2009, 79, 912–918.
  • 50.
    Quadri, I.A.; Bhowmick, S.; Joshi, D. A comprehensive technique for optimal allocation of distributed energy resources in radial distribution systems. Appl. Energy 2018, 211, 1245–1260.
  • 51.
    Kumar, N.; Quadri, I.A.; Ahsan, S. Multi-objective based performance analysis of optimal reconfiguration and DSTATCOM allocation in distribution networks. Electr. Power Syst. Res. 2025, 248, 111868.
  • 52.
    Solati, A.; Shojaei, A.A.; Soltani, S.; et al. Fuzzy-Based Multi-Objective Optimal Allocation of Capacitors and DSTATCOMs to Minimize Installation Cost and Power Loss and Improve Voltage Profile by Optimal Control of Fuzzy Parameters. IET Renew. Power Gener. 2025, 19, e70018. https://doi.org/10.1049/rpg2.70018.
  • 53.
    Lakervi, E.; Holmes, E.J. Electricity Distribution Network Design; Institution of Engineering & Technology: London, UK, 1996.
  • 54.
    Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. https://doi.org/10.1016/j.cad.2010.12.015.
  • 55.
    Baran, M.E.; Wu, F.F. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 2002, 4, 1401–1407.
  • 56.
    Injeti, S.K.; Kumar, N.P. A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large-scale radial distribution systems. Int. J. Electr. Power Energy Syst. 2013, 45, 142–151.
  • 57.
    Aman, M.M.; Jasmon, G.B.; Bakar, A.H.A.; et al. A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm. Energy 2014, 66, 202–215.
  • 58.
    Esmaeili, M.; Sedighizadeh, M.; Esmaili, M. Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty. Energy 2016, 103, 86–99.
  • 59.
    Devabalaji, K.R.; Ravi, K. Optimal size and siting of multiple DG and DSTATCOM in radial distribution system using Bacterial Foraging Optimization Algorithm. Ain Shams Eng. J. 2016, 7, 959–971.
  • 60.
    Yuvaraj, T.; Ravi, K.; Devabalaji, K.R. DSTATCOM allocation in distribution networks considering load variations using bat algorithm. Ain Shams Eng. J. 2017, 8, 391–403.
  • 61.
    Sedighizadeh, M.; Eisapour-Moarref, A. The Imperialist Competitive Algorithm for Optimal Multi-Objective Location and Sizing of DSTATCOM in Distribution Systems Considering Loads Uncertainty. INAE Lett. 2017, 2, 83–95.
  • 62.
    Taher, S.A.; Afsari, A.R. Optimal allocation and sizing of DSTATCOM by the immune algorithm in distribution networks including distributed generation. Soft Comput. J. 2013, 2, 2–15.
  • 63.
    Yuvaraj, T.; Ravi, K.; Devabalaji, K.R. Optimal Allocation of DG and DSTATCOM in Radial Distribution System Using Cuckoo Search Optimization Algorithm. Model. Simul. Eng. 2017, 2017, 2857926.
  • 64.
    Moravej, Z.; Akhlaghi, A. A novel approach based on cuckoo search for DG allocation in distribution network. Int. J. Electr. Power Energy Syst. 2013, 44, 672–679.
Share this article:
How to Cite
Quadri, I. A.; Kumar, N.; Ahsan, S. Intelligent Control of Compensating Devices for Power Quality Enhancement in Radial Network. Smart Energy Systems 2025, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.