- 1.
Guan, Q.; Fang, Y.; Wu, X.; et al. Stimuli responsive metal organic framework materials towards advanced smart application. Today 2023, 64, 138–164. https://doi.org/10.1016/j.mattod.2023.02.013.
- 2.
Ren, J.; Zhang, Y.; Zhao, D.; et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature2022, 608, 62–68. https://doi.org/10.1038/s41586-022-04914-8.
- 3.
Li, T.; Wang, D.; Zhang, S.; et al. Corrosion Behavior of High Entropy Alloys and Their Application in the Nuclear Industry—An Overview. Metals2023, 13, 363. https://doi.org/10.3390/met13020363.
- 4.
Barron, P.J.; Carruthers, A.W.; Fellowes, J.W.; et al. Towards V-based high-entropy alloys for nuclear fusion applications. Mater. 2020, 176, 12–16. https://doi.org/10.1016/j.scriptamat.2019.09.028.
- 5.
Wang, X.; Huang, H.; Shi, J.; et al. Recent progress of tungsten-based high-entropy alloys in nuclear fusion. Tungsten2021, 3, 143–160. https://doi.org/10.1007/s42864-021-00092-8.
- 6.
Jeong, U.; Yin, Y. Smart and Responsive Micro- and Nanostructured Materials. Funct. Mater. 2020, 30, 1907059. https://doi.org/10.1002/adfm.201907059.
- 7.
Silveyra, J.M.; Ferrara, E.; Huber, D.L.; et al. Soft magnetic materials for a sustainable and electrified world. Science2018, 362, eaao0195. https://doi.org/10.1126/science.aao0195.
- 8.
Keshav, S.; Srinivas, G. Flying smart: Smart materials used in aviation industry. Today Proc. 2020, 27, 244–250. https://doi.org/10.1016/j.matpr.2019.10.115.
- 9.
Kim, H.; Ahn, S.K.; Mackie, D.M.; et al. Shape morphing smart 3D actuator materials for micro soft robot. Today 2020, 41, 243–269. https://doi.org/10.1016/j.mattod.2020.06.005.
- 10.
Zheng, Y.; Tang, N.; Omar, R.; et al. Smart Materials Enabled with Artificial Intelligence for Healthcare Wearables. Funct. Mater. 2021, 31, 2105482. https://doi.org/10.1002/adfm.202105482.
- 11.
Khan, A.; Haque, M.N.; Kabiraz, D.C.; et al. A review on advanced nanocomposites materials based smart textile biosensor for healthcare monitoring from human sweat. Actuators A Phys. 2023, 350, 114093. https://doi.org/10.1016/j.sna.2022.114093.
- 12.
Duan, Y.; Liu, K.; Qi, J.; et al. Engineering lignocellulose-based composites for advanced structural materials. Crops Prod. 2023, 205, 117562. https://doi.org/10.1016/j.indcrop.2023.117562.
- 13.
Han, L.; Zhu, S.; Rao, Z.; et al. Multifunctional high-entropy materials. Rev. Mater. 2024, 9, 846–865. https://doi.org/10.1038/s41578-024-00720-y.
- 14.
Lee, H.T.; Seichepine, F.; Yang, G.Z. Microtentacle Actuators Based on Shape Memory Alloy Smart Soft Composite. Funct. Mater. 2020, 30, 2002510. https://doi.org/10.1002/adfm.202002510.
- 15.
Kim, M.S.; Heo, J.K.; Rodrigue, H.; et al. Shape Memory Alloy (SMA) Actuators: The Role of Material, Form, and Scaling Effects. Mater. 2023, 35, 2208517. https://doi.org/10.1002/adma.202208517.
- 16.
Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; et Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. https://doi.org/10.1002/adem.200300567.
- 17.
Zhang, Y. Science and technology in high-entropy alloys. China Mater. 2018, 61, 2–22.
- 18.
Pradeep, K.G.; Tasan, C.C.; Yao, M.J.; et Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Mater. Sci. Eng. A 2015, 648, 183–192.
- 19.
Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta 2017, 122, 448–511. https://doi.org/10.1016/j.actamat.2016.08.081.
- 20.
Song, X.; Liu, Z.; Liaw, P.K.; et Microstructures and precipitation behaviors of a hypoeutectic high-entropy alloy prepared by laser powder bed fusion. Addit. Manuf. 2024, 85, 104171.
- 21.
Zhang, W.-T.; Wang, X.-Q.; Zhang, F.-Q.; et al. Frontiers in high entropy alloys and high entropy functional materials. Rare 2024, 43, 4639–4776. https://doi.org/10.1007/s12598-024-02852-0.
- 22.
Chang, J.; Wang, G.; Li, C.; et Rational design of septenary high-entropy alloy for direct ethanol fuel cells. Joule 2023, 7, 587–602. https://doi.org/10.1016/j.joule.2023.02.011.
- 23.
Wu, Y.; Yue, Y.; Yan, X.; et Mechanical and corrosion behavior of CoCrFeNiAl0.3 high entropy alloy seamless tubes. J. Alloys Compd. 2025, 1010, 177143. https://doi.org/10.1016/j.jallcom.2024.177143.
- 24.
Bingnan, Q.; Xiaoqing, L.; Wei, Y.; et An Ultra-Low Modulus of Ductile TiZrHfTa Biomedical High-Entropy Alloys through Deformation Induced Martensitic Transformation/Twinning/Amorphization. Adv. Mater. 2024, 36, 202310926. https://doi.org/10.1002/adma.202310926.
- 25.
Xu, L.; Du, H.; Liu, J.; et Microstructure, Mechanical, and Electrochemical Properties of SiC Particle Reinforced CoCrFeNiCu High-Entropy Alloy Coatings. Coatings 2022, 12, 519.
- 26.
Gao, J.; Wang, X.; Zhang, S.; et Producing of FeCoNiCrAl high-entropy alloy reinforced Al composites via friction stir processing technology. Int. J. Adv. Manuf. Technol. 2020, 110, 569–580. https://doi.org/10.1007/s00170-020-05912-8.
- 27.
Rao, Z.; Tung, P.Y.; Xie, R.; et al. Machine learning–enabled high-entropy alloy discovery. Science2022, 378, 78–85. https://doi.org/10.1126/science.abo4940.
- 28.
Chen, C.; Han, X.; Zhang, Y.; et al. Phase prediction of high-entropy alloys based on machine learning and an improved information fusion approach. Mater. Sci. 2024, 239, 112976. https://doi.org/10.1016/j.commatsci.2024.112976.
- 29.
Rickman, J.M.; Chan, H.M.; Harmer, M.P.; et al. Materials informatics for the screening of multi-principal elements and high-entropy alloys. Commun. 2019, 10, 2618. https://doi.org/10.1038/s41467-019-10533-1.
- 30.
Huang, W.; Martin, P.; Zhuang, H.L. Machine-learning phase prediction of high-entropy alloys. Acta 2019, 169, 225–236. https://doi.org/10.1016/j.actamat.2019.03.012.
- 31.
Farber, E.; Zhu, J.-N.; Popovich, A.A.; et al. A review of NiTi shape memory alloy as a smart material produced by additive manufacturing. Today Proc. 2020, 30, 761–767.
- 32.
Sater, J.M.; Lab, A.F.W. Smart structures and materials 1997. In Proceedings of the Industrial and Commercial Applications of Smart Structures Technologies, San Diego, CA, USA, 4–6 March 1997.
- 33.
Ölander, A. An electrochemical investigation of solid cadmium-gold alloys. Am. Chem. Soc. 1932, 54, 3819–3833. https://doi.org/10.1021/ja01349a004.
- 34.
Buehler, W.J.; Gilfrich, J.V.; Wiley, R.C. Effect of Low-Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi. Appl. Phys. 1963, 34, 1475–1477. https://doi.org/10.1063/1.1729603.
- 35.
Kauffman, G.B.; Mayo, I. The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications. Educ. 1997, 2, 1–21. https://doi.org/10.1007/s00897970111a.
- 36.
Ullakko, K. Magnetically controlled shape memory alloys: A new class of actuator materials. Mater. Eng. Perform. 1996, 5, 405–409. https://doi.org/10.1007/BF02649344.
- 37.
Chen, C.-H.; Chen, Y.-J. Shape memory characteristics of (TiZrHf)50Ni25Co10Cu15high entropy shape memory alloy. Mater. 2019, 162, 185–189. https://doi.org/10.1016/j.scriptamat.2018.11.023.
- 38.
Liu, D.; Zhu, J.; Ding, Z.; et al. Magnetic-field-induced twist in Ni-Mn-Ga-Co-Cu microwires. Mater. 2017, 128, 91–94. https://doi.org/10.1016/j.scriptamat.2016.09.041.
- 39.
Pérez-Checa, A.; José María, P.; Feuchtwanger, J.; et al. Role of Fe addition in Ni–Mn–Ga–Co–Cu–Fe ferromagnetic shape memory alloys for high-temperature magnetic actuation. Acta 2020, 196, 549–555. https://doi.org/10.1016/j.actamat.2020.07.007.
- 40.
Pérez-Checa, A.; Denys, M.; Andrey, S.; et al. Study of the critical parameters for magnetic field-induced strain in high temperature Ni-Mn-Ga-Co-Cu-Fe single crystals. Mater. 2019, 158, 16–19. https://doi.org/10.1016/j.scriptamat.2018.08.018.
- 41.
Zider, R.B.; Krumme, J.F. Eyeglass Frame Including Shape-Memory Elements. U.S. Patent 4,896,955, 30 January 1990.
- 42.
Hautcoeur, A.; Eberhardt, A. Eyeglass Frame with Very High Recoverable Deformability. U.S. Patent 5,640,217, 17 June 1997.
- 43.
Degeratu, S.; Rotaru, P.; Boncea, I.; et al. An Overview of the Properties and Industrial Applications of Shape Memory Alloys. InProceedings of the 2018 International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, 1–3 November 2018. https://doi.org/10.1109/isfee.2018.8742410.
- 44.
Yang, H.; Xu, M.; Li, W.; et al. Design and Implementation of a Soft Robotic Arm Driven by SMA Coils. IEEE Ind. Electron. 2018, 66, 6108–6116. https://doi.org/10.1109/tie.2018.2872005.
- 45.
Tsimbo Fokou, M.R.; Xia, Q.; Jin, H.; et al. A Soft Robotic Fish Actuated by Artificial Muscle Modules (SoRoFAAM-1). Bionic Eng. 2023, 20, 2030–2043. https://doi.org/10.1007/s42235-023-00390-6.
- 46.
Kumar, P.; Singh, J.; Kaur, D. Ferromagnetic Shape Memory Alloy Integrated Highly Flexible SAW Delay Line Magnetic Sensor. IEEE J. 2024, 24, 2664–2670. https://doi.org/10.1109/jsen.2023.3345031.
- 47.
Pang, J.; Tian, J.; Dang, P.; et al. Attainment of large thermal hysteresis and good thermal cyclic stability in multi-component TiHfZrNi alloys. Mater. 2024, 249, 116164. https://doi.org/10.1016/j.scriptamat.2024.116164.
- 48.
Li, H.F.; Fei, N.; Yufeng, Z.; et al. Nanocrystalline Ti2Ni50.8shape memory alloy as orthopaedic implant material with better performance. J. Mater. Sci. Technol. 2019, 35, 2156–2162. https://doi.org/10.1016/j.jmst.2019.04.026.
- 49.
Baitab, D.M.; Majid, D.L.A.H.A.; Abdullah, E.; et al. A review of techniques for embedding shape memory alloy (SMA) wires in smart woven composites. J. Eng. Technol. 2018, 7, 129–136. https://doi.org/10.14419/ijet.v7i4.13.21344.
- 50.
Gall, K.; Maier, H.J. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta 2002, 50, 4643–4657. https://doi.org/10.1016/s1359-6454(02)00315-4.
- 51.
Morin, C.; Moumni, Z.; Zaki, W. Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling. J. Plast. 2011, 27, 1959–1980. https://doi.org/10.1016/j.ijplas.2011.05.005.
- 52.
Wei, P.; Hua, P.; Xia, M.; et al. Bending fatigue life enhancement of NiTi alloy by pre-strain warm surface mechanical attrition treatment. Acta 2022, 240, 118269. https://doi.org/10.1016/j.actamat.2022.118269.
- 53.
Benafan, O.; Brown, J.; Calkins, F.T.; et al. Shape memory alloy actuator design: CASMART collaborative best practices and case studies. J. Mech. Mater. Des. 2014, 10, 1–42. https://doi.org/10.1007/s10999-013-9227-9.
- 54.
Lagoudas, D.C.; Entchev, P.B.; Popov, P.; et al. Shape memory alloys, Part II: Modeling of polycrystals. Mater. 2006, 38, 430–462. https://doi.org/10.1016/j.mechmat.2005.08.003.
- 55.
Wang, W.; Ji, Y.; Fang, M.; et al. Reentrant strain glass transition in Ti-Ni-Cu shape memory alloy. Acta 2022, 226, 117618. https://doi.org/10.1016/j.actamat.2022.117618.
- 56.
Zhu, J.N.; Zhu, W.; Borisov, E.; et al. Effect of heat treatment on microstructure and functional properties of additively manufactured NiTi shape memory alloys. Alloys Compd. 2023, 967, 171740. https://doi.org/10.1016/j.jallcom.2023.171740.
- 57.
Jena, D.; Dora, T.R.K.; Vardhan, A.V.; et al. Micro-texture and residual stress evolution in shot peened superelastic Ni-Ti/Ni-Ti-Co shape memory alloys. Coat. Technol. 2024, 479, 130529. https://doi.org/10.1016/j.surfcoat.2024.130529.
- 58.
Milyutin, V.A.; Bureš, R.; Fáberová, M.; et al. Multi-component soft magnetic alloy FeNiCoAl4Mo0.1Si0.4B0.1with high frequency stability of permeability. Mater. Sci. Eng. B 2023, 293, 116485. https://doi.org/10.1016/j.mseb.2023.116485.
- 59.
Cai, M.; Wang, J.; Wang, Q.; et al. Improvement of soft-magnetic properties for Fe-based amorphous alloys with high saturation polarization by stress annealing. Res. Lett. 2023, 11, 595–603. https://doi.org/10.1080/21663831.2023.2199044.
- 60.
Li, X.; Zhou, J.; Shen, L.; et al. Exceptionally High Saturation Magnetic Flux Density and Ultralow Coercivity via an Amorphous–Nanocrystalline Transitional Microstructure in an FeCo-Based Alloy. Mater. 2022, 35, 2205863. https://doi.org/10.1002/adma.202205863.
- 61.
Premkumar, M.; Mitra, A.; Arun, P.; et al. Magnetostriction of Fe-rich FeSiB(P)NbCu amorphous and nanocrystalline soft-magnetic alloys. Alloys Compd. 2023, 960, 170760. https://doi.org/10.1016/j.jallcom.2023.170760.
- 62.
Luo, T.; Xu, J.; Wang, G.; et al. Composition dependence of amorphous forming, crystallization behavior, magnetic and electronic properties of silicon-rich FeSiBCuNb alloys. Magn. Magn. Mater. 2020, 505, 166714. https://doi.org/10.1016/j.jmmm.2020.166714.
- 63.
Haneczok, G.; Wroczyński, R.; Kwapuliński, P.; et al. Electro/magnetic shielding effectiveness of soft magnetic Fe80Nb6B14 amorphous alloy. Mater. Process. Technol. 2009, 209, 2356–2360. https://doi.org/10.1016/j.jmatprotec.2008.05.026.
- 64.
Zhou, J.; Li, X.; Hou, X.; et al. Ultrahigh Permeability at High Frequencies via A Magnetic-Heterogeneous Nanocrystallization Mechanism in an Iron-Based Amorphous Alloy. Mater. 2023, 35, 2304490. https://doi.org/10.1002/adma.202304490.
- 65.
Chen, Z.; Kang, S.; Zhu, Q.; et al. Tailoring the thermal stability and soft magnetic properties of Fe80-Ni Si7B8P4Cu1amorphous nanocrystalline alloys based on the magnetic domain structure. Alloys Compd. 2023, 968, 172116. https://doi.org/10.1016/j.jallcom.2023.172116.
- 66.
Zanaeva, E.N.; Bazlov, A.I.; Milkova, D.A.; et al. High-Frequency soft magnetic properties of Fe-Si-B-P-Mo-Cu amorphous and nanocrystalline alloys. Non-Cryst. Solids 2019, 526, 9702. https://doi.org/10.1016/j.jnoncrysol.2019.119702.
- 67.
Li, J.; Yu, H.; Luo, P.; et al. Effects of Phosphating Treatment on the Growth of a Phosphate Layer and the Magnetic Properties of Fe-Based Amorphous Magnetic Powder Cores. Electron. Mater. 2023, 52, 5412–5421. https://doi.org/10.1007/s11664-023-10437-3.
- 68.
Tokmakova, E.N.; Vvedenskiy, V.Y. Effect of annealing in unsaturated magnetic field on the magnetic properties of an amorphous alloy Fe77Ni1Si9B13. Mater. Sci. Mater. Electron. 2023, 34, 1509. https://doi.org/10.1007/s10854-023-10931-8.
- 69.
Lin, J.; Li, X.; Zhou, S.; et al. Effects of heat treatment in air on soft magnetic properties of FeCoSiBPC amorphous core. Non-Cryst. Solids 2022, 597, 121932. https://doi.org/10.1016/j.jnoncrysol.2022.121932.
- 70.
Luo, T.; Yang, Y.; Fan, C.; et al. Effects of phosphorus substitution on amorphous formation, crystallization behavior and magnetic properties of FeSiBCuNb alloys. Non-Cryst. Solids 2022, 576, 1286. https://doi.org/10.1016/j.jnoncrysol.2021.121286.
- 71.
Li, Y.L.; Dou, Z.X.; Chen, X.M.; et al. Improving the amorphous forming ability and magnetic properties of FeSiBPCu amorphous and nanocrystalline alloys by utilizing carbon. Alloys Compd. 2020, 844, 155767. https://doi.org/10.1016/j.jallcom.2020.155767.
- 72.
Li, W.; Yang, Y.H.; Xie, C.X.; et al. Glass formation, crystallization and magnetic properties of high-Fe Fe-metalloid (B, C, and P) melt-spun ribbons. Magn. Magn. Mater. 2020, 498, 166128. https://doi.org/10.1016/j.jmmm.2019.166128.
- 73.
Pang, L.L.; Inoue, A.; Zanaeva, E.N.; et al. Nanocrystallization, good soft magnetic properties and ultrahigh mechanical strength for Fe82-85B13-16Si1Cu1amorphous alloys. Alloys Compd. 2019, 785, 25–37. https://doi.org/10.1016/j.jallcom.2019.01.150.
- 74.
Lu, S.; Wang, M.; Zhao, Z. Recent advances and future developments in Fe-based amorphous soft magnetic composites. Non-Cryst. Solids 2023, 616, 122440. https://doi.org/10.1016/j.jnoncrysol.2023.122440.
- 75.
Chaudhary, V.; Chaudhary, R.; Banerjee, R.; et al. Accelerated and conventional development of magnetic high entropy alloys. Today 2021, 49, 231–252. https://doi.org/10.1016/j.mattod.2021.03.018.
- 76.
Liu, M.; Lei, C.; Wang, Y.; et al. High-throughput preparation for alloy composition design in additive manufacturing: A comprehensive review. Genome Eng. Adv. 2024, 2, e55. https://doi.org/10.1002/mgea.55.
- 77.
Li, Z.; Ludwig, A.; Savan, A.; et al. Combinatorial metallurgical synthesis and processing of high-entropy alloys. Mater. Res. 2018, 33, 3156–3169. https://doi.org/10.1557/jmr.2018.214.
- 78.
Li, W.; Xie, D.; Li, D.; et al. Mechanical behavior of high-entropy alloys. Mater. Sci. 2021, 118, 100777. https://doi.org/10.1016/j.pmatsci.2021.100777.
- 79.
Borkar, T.; Gwalani, B.; Choudhuri, D.; et al. A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta 2016, 116, 63–76. https://doi.org/10.1016/j.actamat.2016.06.025.
- 80.
Moorehead, M.; Bertsch, K.; Niezgoda, M.; et al. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing. Des. 2020, 187, 108358. https://doi.org/10.1016/j.matdes.2019.108358.
- 81.
Akbari, A.; Balk, T.J. Combinatorial thin film screening to identify single-phase, non-equiatomic high entropy alloys in the MnFeCoNiCu system. MRS 2019, 9, 750–755. https://doi.org/10.1557/mrc.2019.53.
- 82.
Shang, G.; Jiang, L.; Liu, Z.Z.; et al. High-throughput experimental study on the microstructural and compositional variations of mechanical properties for AlCoCrFeNi high entropy alloys. Alloys Compd. 2022, 917, 165513. https://doi.org/10.1016/j.jallcom.2022.165513.
- 83.
Zhao, L.; Zhou, Y.; Wang, H.; et al. High-Throughput Synthesis and Characterization of a Combinatorial Materials Library in Bulk Alloys. Mater. Trans. 2021, 52, 1159–1168. https://doi.org/10.1007/s11661-021-06149-0.
- 84.
Wang, C.; Han, K.; Liu, X.; et al. First-principles study of hydrogen-vacancy interactions in CoCrFeMnNi high-entropy alloy. Alloys Compd. 2022, 922, 166259. https://doi.org/10.1016/j.jallcom.2022.166259.
- 85.
Yu, P.; Feng, R.; Du, J.; et al. Phase transformation assisted twinning in a face-centered-cubic FeCrNiCoAl high entropy alloy. Acta 2019, 181, 491–500. https://doi.org/10.1016/j.actamat.2019.10.012.
- 86.
Zhang, Z.Q.; Ketov, S.V.; Fellner, S.; et al. Reactive interdiffusion of an Al film and a CoCrFeNi high-entropy alloy. Des. 2022, 216, 110530. https://doi.org/10.1016/j.matdes.2022.110530.
- 87.
Yin, B.; Yoshida, S.; Tsuji, N.; et al. Yield strength and misfit volumes of NiCoCr and implications for short-range-order. Commun. 2020, 11, 2507. https://doi.org/10.1038/s41467-020-16083-1.
- 88.
Wu, M.; Wang, S.; Huang, H.; et al. CALPHAD aided eutectic high-entropy alloy design. Lett. 2020, 262, 127175. https://doi.org/10.1016/j.matlet.2019.127175.
- 89.
Zhao, D.; Jin, X.; Qiao, J.; et al. Machine-learning-assisted modeling of alloy ordering phenomena at the electronic scale through electronegativity. Phys. Lett. 2024, 124, 0188516. https://doi.org/10.1063/5.0188516.
- 90.
Guo, C.; Wei, S.; Wu, Z.; et al. Effect of dual phase structure induced by chemical segregation on hot tearing reduction in additive manufacturing. Des. 2023, 228, 111847. https://doi.org/10.1016/j.matdes.2023.111847.
- 91.
Men, Y.; Wu, D.; Hu, Y.; et al. Understanding Alkaline Hydrogen Oxidation Reaction on PdNiRuIrRh High-Entropy-Alloy by Machine Learning Potential. Chem. Int. Ed. 2023, 62, e202217976. https://doi.org/10.1002/anie.202217976.
- 92.
Ren, J.C.; Zhou, J.; Butch, C.J.; et al. Predicting single-phase solid solutions in as-sputtered high entropy alloys: High-throughput screening with machine-learning model. Mater. Sci. Technol. 2023, 138, 70–79. https://doi.org/10.1016/j.jmst.2022.07.059.
- 93.
Singh, S.; Katiyar, N.K.; Goel, S.; et al. Phase prediction and experimental realisation of a new high entropy alloy using machine learning. Rep. 2023, 13, 4811. https://doi.org/10.1038/s41598-023-31461-7.
- 94.
He, S.; Wang, Y.; Zhang, Z.; et al. Interpretable machine learning workflow for evaluation of the transformation temperatures of TiZrHfNiCoCu high entropy shape memory alloys. Des. 2023, 225, 111513. https://doi.org/10.1016/j.matdes.2022.111513.
- 95.
Kumar, S.; Pradhan, H.; Shah, N.; et al. Machine learning enabled processing map generation for high-entropy alloy. Mater. 2023, 234, 115543. https://doi.org/10.1016/j.scriptamat.2023.115543.
- 96.
Kumar, N.; Sarkar, S.; Anand, T.N.C.; et al. Estimating metal mass flowrate in gas-atomization for metal powder production. Powder 2024, 448, 120238. https://doi.org/10.1016/j.powtec.2024.120238.
- 97.
Steven, P.M.; Gary, S.S. A study of liquid metal atomization using close-coupled nozzles, part 1: Gas dynamic behavior. Sprays 2005, 15, 19–40. https://doi.org/10.1615/atomizspr.v15.i1.20.
- 98.
Alvarez, K.L.; Baghbaderani, H.A.; Martín, J.M.; et al. Novel Fe-based amorphous and nanocrystalline powder cores for high-frequency power conversion. Magn. Magn. Mater. 2020, 501, 166457. https://doi.org/10.1016/j.jmmm.2020.166457.
- 99.
Chang, J.; Zhan, T.; Peng, X.; et al. Improved permeability and core loss of amorphous FeSiB /Ni-Zn ferrite soft magnetic composites prepared in an external magnetic field. Alloys Compd. 2021, 886, 161335. https://doi.org/10.1016/j.jallcom.2021.161335.
- 100.
Wang, P.; Zhu, Z.; Liu, J.; et al. Soft magnetic properties regulation of FeSiBC amorphous powders/CIP magnetic powder core with single and double-layer core–shell structure. Magn. Magn. Mater. 2023, 578, 170809. https://doi.org/10.1016/j.jmmm.2023.170809.
- 101.
Conteri, R.; Borkar, T.; Nag, S.; et al. Laser additive processing of Fe-Si-B-Cu-Nb magnetic alloys. Manuf. Process. 2017, 29, 175–181. https://doi.org/10.1016/j.jmapro.2017.07.029.
- 102.
Zhao, Y.; Bai, Y.; Li, T.; et al. Microstructure and Superelasticity of Cu–Sn Shape-Memory Microwires by Glass-Coated Melt Spinning. Metals2023, 13, 1852. https://doi.org/10.3390/met13111852.
- 103.
Salaheldeen, M.; Garcia-Gomez, A.; Corte-León, P.; et al. Manipulation of magnetic and structure properties of Ni2FeSi glass-coated microwires by annealing. Alloys Compd. 2023, 942, 169026. https://doi.org/10.1016/j.jallcom.2023.169026.
- 104.
Komova, E.; Varga, M.; Varga, R.; et al. Nanocrystalline glass-coated FeNiMoB microwires. Phys. Lett. 2008, 93, 062502. https://doi.org/10.1063/1.2969057.
- 105.
Khatun, H.; Nath, S.D.; Sikder, S.S. Kinetics of crystallization and soft magnetic properties of Co72Fe8B10Si10amorphous alloys. B Condens. 2024, 691, 416300.
- 106.
Amini, N.; Miglierini, M.; Hasiak, M.; et al. Thickness Dependence of Mössbauer Parameters for Fe₇₈Si₉B₁₃ Metallic Glass Ribbons. Acta Pol. A 2017, 131, 666–668. https://doi.org/10.12693/aphyspola.131.666.
- 107.
Ma, Y.; Kou, Z.; Yang, W.; et al. A one-step fabrication of soft-magnetic high entropy alloy fiber with excellent strength and flexibility. Commun. 2024, 15, 10549. https://doi.org/10.1038/s41467-024-54984-7.
- 108.
Xu, Z.; Ji, Y.; Liu, C.; et al. A polymer-like ultrahigh-strength metal alloy. Nature2024, 633, 575–581. https://doi.org/10.1038/s41586-024-07900-4.
- 109.
Liu, G.; Li, S.; Song, C.; et al. High-entropy Ti-Zr-Hf-Ni-Cu alloys as solid-solid phase change materials for high-temperature thermal energy storage. Intermetallics2024, 166, 108177. https://doi.org/10.1016/j.intermet.2023.108177.
- 110.
Li, H.X.; Lu, Z.C.; Wang, S.L.; et al. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications. Mater. Sci. 2019, 103, 235–318. https://doi.org/10.1016/j.pmatsci.2019.01.003.
- 111.
He, S.; Zhou, X.; Mordehai, D.; et al. Thermal super-jogs control the high-temperature strength plateau in Nb-Mo-Ta-W alloys. Acta 2023, 244, 118539. https://doi.org/10.1016/j.actamat.2022.118539.
- 112.
Hua, P.; Xia, M.; Onuki, Y.; et al. Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance. Nanotechnol. 2021, 16, 409–413. https://doi.org/10.1038/s41565-020-00837-5.
- 113.
Eggert, B.G.; Delczeg-Czirjak, E.K.; Maccari, F.; et al. Exploring V-Fe-Co-Ni-Al and V-Fe-Co-Ni-Cu high entropy alloys for magnetocaloric applications. Alloys Compd. 2022, 921, 166040. https://doi.org/10.1016/j.jallcom.2022.166040.
- 114.
Nai, X.; Chen, H.; Zhao, S.; et al. Investigation on the microstructure, mechanical and electrical properties of Ti3SiC2/Cu joint obtained by Ti25Zr25Ni25Cu25amorphous high entropy alloy and Ag composite filler. Sci. Eng. A 2023, 877, 145190. https://doi.org/10.1016/j.msea.2023.145190.