2505000679
  • Open Access
  • Review
Advanced Applications for Smart-Metallic Materials
  • Rongzhi Li 1,   
  • Peter K. Liaw 2,   
  • Jianzhong Jiang 3,   
  • Yong Zhang 1, 3, *

Received: 07 Apr 2025 | Revised: 06 May 2025 | Accepted: 15 May 2025 | Published: 23 May 2025

Abstract

Smart metallic materials, recognized for their responsiveness to external stimuli, have garnered significant attention in advanced technological applications. This review focuses on three pivotal smart materials: high-entropy alloys (HEAs), shape-memory alloys (SMAs), and soft magnetic materials, addressing their processing techniques, properties, and applications. HEAs, characterized by their multi-principal elemental compositions, exhibit exceptional mechanical strength, corrosion resistance, and thermal stability, positioning them as promising candidates for extreme environments. SMAs, renowned for their ability to recover original shapes under thermal or mechanical stimuli, find widespread use in actuators, sensors, and biomedical devices. Soft magnetic materials, with low hysteresis loss and high permeability, are critical for energy-efficient systems, such as electric motors and transformers. The review further explores diverse processing methodologies, including conventional melting, Taylor wire fabrication, and advanced additive manufacturing (e.g., 3D printing), which enable precise control over microstructures, material properties, and component design to enhance performance and functionality. Emphasis is placed on the integration of these materials into smart systems, highlighting their synergistic roles in emerging technologies. Challenges, such as material stability, scalability of processing techniques, and the development of multifunctional composites, are critically discussed. Finally, future research directions are outlined to address these limitations and advance the field toward next-generation intelligent material systems. This comprehensive analysis aims to bridge the gap between material design, processing innovation, and practical applications, offering insights for researchers and engineers in optimizing smart material solutions.

References 

  • 1.
    Guan, Q.; Fang, Y.; Wu, X.; et al. Stimuli responsive metal organic framework materials towards advanced smart application. Today 2023, 64, 138–164. https://doi.org/10.1016/j.mattod.2023.02.013.
  • 2.
    Ren, J.; Zhang, Y.; Zhao, D.; et al. Strong yet ductile nanolamellar high-entropy alloys by additive manufacturing. Nature2022, 608, 62–68. https://doi.org/10.1038/s41586-022-04914-8.
  • 3.
    Li, T.; Wang, D.; Zhang, S.; et al. Corrosion Behavior of High Entropy Alloys and Their Application in the Nuclear Industry—An Overview. Metals2023, 13, 363. https://doi.org/10.3390/met13020363.
  • 4.
    Barron, P.J.; Carruthers, A.W.; Fellowes, J.W.; et al. Towards V-based high-entropy alloys for nuclear fusion applications. Mater. 2020, 176, 12–16. https://doi.org/10.1016/j.scriptamat.2019.09.028.
  • 5.
    Wang, X.; Huang, H.; Shi, J.; et al. Recent progress of tungsten-based high-entropy alloys in nuclear fusion. Tungsten2021, 3, 143–160. https://doi.org/10.1007/s42864-021-00092-8.
  • 6.
    Jeong, U.; Yin, Y. Smart and Responsive Micro- and Nanostructured Materials. Funct. Mater. 2020, 30, 1907059. https://doi.org/10.1002/adfm.201907059.
  • 7.
    Silveyra, J.M.; Ferrara, E.; Huber, D.L.; et al. Soft magnetic materials for a sustainable and electrified world. Science2018, 362, eaao0195. https://doi.org/10.1126/science.aao0195.
  • 8.
    Keshav, S.; Srinivas, G. Flying smart: Smart materials used in aviation industry. Today Proc. 2020, 27, 244–250. https://doi.org/10.1016/j.matpr.2019.10.115.
  • 9.
    Kim, H.; Ahn, S.K.; Mackie, D.M.; et al. Shape morphing smart 3D actuator materials for micro soft robot. Today 2020, 41, 243–269. https://doi.org/10.1016/j.mattod.2020.06.005.
  • 10.
    Zheng, Y.; Tang, N.; Omar, R.; et al. Smart Materials Enabled with Artificial Intelligence for Healthcare Wearables. Funct. Mater. 2021, 31, 2105482. https://doi.org/10.1002/adfm.202105482.
  • 11.
    Khan, A.; Haque, M.N.; Kabiraz, D.C.; et al. A review on advanced nanocomposites materials based smart textile biosensor for healthcare monitoring from human sweat. Actuators A Phys. 2023, 350, 114093. https://doi.org/10.1016/j.sna.2022.114093.
  • 12.
    Duan, Y.; Liu, K.; Qi, J.; et al. Engineering lignocellulose-based composites for advanced structural materials. Crops Prod. 2023, 205, 117562. https://doi.org/10.1016/j.indcrop.2023.117562.
  • 13.
    Han, L.; Zhu, S.; Rao, Z.; et al. Multifunctional high-entropy materials. Rev. Mater. 2024, 9, 846–865. https://doi.org/10.1038/s41578-024-00720-y.
  • 14.
    Lee, H.T.; Seichepine, F.; Yang, G.Z. Microtentacle Actuators Based on Shape Memory Alloy Smart Soft Composite. Funct. Mater. 2020, 30, 2002510. https://doi.org/10.1002/adfm.202002510.
  • 15.
    Kim, M.S.; Heo, J.K.; Rodrigue, H.; et al. Shape Memory Alloy (SMA) Actuators: The Role of Material, Form, and Scaling Effects. Mater. 2023, 35, 2208517. https://doi.org/10.1002/adma.202208517.
  • 16.
    Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.; et Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. https://doi.org/10.1002/adem.200300567.
  • 17.
    Zhang, Y. Science and technology in high-entropy alloys. China Mater. 2018, 61, 2–22.
  • 18.
    Pradeep, K.G.; Tasan, C.C.; Yao, M.J.; et Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Mater. Sci. Eng. A 2015, 648, 183–192.
  • 19.
    Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta 2017, 122, 448–511. https://doi.org/10.1016/j.actamat.2016.08.081.
  • 20.
    Song, X.; Liu, Z.; Liaw, P.K.; et Microstructures and precipitation behaviors of a hypoeutectic high-entropy alloy prepared by laser powder bed fusion. Addit. Manuf. 2024, 85, 104171.
  • 21.
    Zhang, W.-T.; Wang, X.-Q.; Zhang, F.-Q.; et al. Frontiers in high entropy alloys and high entropy functional materials. Rare 2024, 43, 4639–4776. https://doi.org/10.1007/s12598-024-02852-0.
  • 22.
    Chang, J.; Wang, G.; Li, C.; et Rational design of septenary high-entropy alloy for direct ethanol fuel cells. Joule 2023, 7, 587–602. https://doi.org/10.1016/j.joule.2023.02.011.
  • 23.
    Wu, Y.; Yue, Y.; Yan, X.; et Mechanical and corrosion behavior of CoCrFeNiAl0.3 high entropy alloy seamless tubes. J. Alloys Compd. 2025, 1010, 177143. https://doi.org/10.1016/j.jallcom.2024.177143.
  • 24.
    Bingnan, Q.; Xiaoqing, L.; Wei, Y.; et An Ultra-Low Modulus of Ductile TiZrHfTa Biomedical High-Entropy Alloys through Deformation Induced Martensitic Transformation/Twinning/Amorphization. Adv. Mater. 2024, 36, 202310926. https://doi.org/10.1002/adma.202310926.
  • 25.
    Xu, L.; Du, H.; Liu, J.; et Microstructure, Mechanical, and Electrochemical Properties of SiC Particle Reinforced CoCrFeNiCu High-Entropy Alloy Coatings. Coatings 2022, 12, 519.
  • 26.
    Gao, J.; Wang, X.; Zhang, S.; et Producing of FeCoNiCrAl high-entropy alloy reinforced Al composites via friction stir processing technology. Int. J. Adv. Manuf. Technol. 2020, 110, 569–580. https://doi.org/10.1007/s00170-020-05912-8.
  • 27.
    Rao, Z.; Tung, P.Y.; Xie, R.; et al. Machine learning–enabled high-entropy alloy discovery. Science2022, 378, 78–85. https://doi.org/10.1126/science.abo4940.
  • 28.
    Chen, C.; Han, X.; Zhang, Y.; et al. Phase prediction of high-entropy alloys based on machine learning and an improved information fusion approach. Mater. Sci. 2024, 239, 112976. https://doi.org/10.1016/j.commatsci.2024.112976.
  • 29.
    Rickman, J.M.; Chan, H.M.; Harmer, M.P.; et al. Materials informatics for the screening of multi-principal elements and high-entropy alloys. Commun. 2019, 10, 2618. https://doi.org/10.1038/s41467-019-10533-1.
  • 30.
    Huang, W.; Martin, P.; Zhuang, H.L. Machine-learning phase prediction of high-entropy alloys. Acta 2019, 169, 225–236. https://doi.org/10.1016/j.actamat.2019.03.012.
  • 31.
    Farber, E.; Zhu, J.-N.; Popovich, A.A.; et al. A review of NiTi shape memory alloy as a smart material produced by additive manufacturing. Today Proc. 2020, 30, 761–767.
  • 32.
    Sater, J.M.; Lab, A.F.W. Smart structures and materials 1997. In Proceedings of the Industrial and Commercial Applications of Smart Structures Technologies, San Diego, CA, USA, 4–6 March 1997.
  • 33.
    Ölander, A. An electrochemical investigation of solid cadmium-gold alloys. Am. Chem. Soc. 1932, 54, 3819–3833. https://doi.org/10.1021/ja01349a004.
  • 34.
    Buehler, W.J.; Gilfrich, J.V.; Wiley, R.C. Effect of Low-Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi. Appl. Phys. 1963, 34, 1475–1477. https://doi.org/10.1063/1.1729603.
  • 35.
    Kauffman, G.B.; Mayo, I. The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications. Educ. 1997, 2, 1–21. https://doi.org/10.1007/s00897970111a.
  • 36.
    Ullakko, K. Magnetically controlled shape memory alloys: A new class of actuator materials. Mater. Eng. Perform. 1996, 5, 405–409. https://doi.org/10.1007/BF02649344.
  • 37.
    Chen, C.-H.; Chen, Y.-J. Shape memory characteristics of (TiZrHf)50Ni25Co10Cu15high entropy shape memory alloy.  Mater. 2019, 162, 185–189. https://doi.org/10.1016/j.scriptamat.2018.11.023.
  • 38.
    Liu, D.; Zhu, J.; Ding, Z.; et al. Magnetic-field-induced twist in Ni-Mn-Ga-Co-Cu microwires. Mater. 2017, 128, 91–94. https://doi.org/10.1016/j.scriptamat.2016.09.041.
  • 39.
    Pérez-Checa, A.; José María, P.; Feuchtwanger, J.; et al. Role of Fe addition in Ni–Mn–Ga–Co–Cu–Fe ferromagnetic shape memory alloys for high-temperature magnetic actuation. Acta 2020, 196, 549–555. https://doi.org/10.1016/j.actamat.2020.07.007.
  • 40.
    Pérez-Checa, A.; Denys, M.; Andrey, S.; et al. Study of the critical parameters for magnetic field-induced strain in high temperature Ni-Mn-Ga-Co-Cu-Fe single crystals. Mater. 2019, 158, 16–19. https://doi.org/10.1016/j.scriptamat.2018.08.018.
  • 41.
    Zider, R.B.; Krumme, J.F. Eyeglass Frame Including Shape-Memory Elements. U.S. Patent 4,896,955, 30 January 1990.
  • 42.
    Hautcoeur, A.; Eberhardt, A. Eyeglass Frame with Very High Recoverable Deformability. U.S. Patent 5,640,217, 17 June 1997.
  • 43.
    Degeratu, S.; Rotaru, P.; Boncea, I.; et al. An Overview of the Properties and Industrial Applications of Shape Memory Alloys. InProceedings of the 2018 International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, 1–3 November 2018. https://doi.org/10.1109/isfee.2018.8742410.
  • 44.
    Yang, H.; Xu, M.; Li, W.; et al. Design and Implementation of a Soft Robotic Arm Driven by SMA Coils. IEEE Ind. Electron. 2018, 66, 6108–6116. https://doi.org/10.1109/tie.2018.2872005.
  • 45.
    Tsimbo Fokou, M.R.; Xia, Q.; Jin, H.; et al. A Soft Robotic Fish Actuated by Artificial Muscle Modules (SoRoFAAM-1). Bionic Eng. 2023, 20, 2030–2043. https://doi.org/10.1007/s42235-023-00390-6.
  • 46.
    Kumar, P.; Singh, J.; Kaur, D. Ferromagnetic Shape Memory Alloy Integrated Highly Flexible SAW Delay Line Magnetic Sensor. IEEE J. 2024, 24, 2664–2670. https://doi.org/10.1109/jsen.2023.3345031.
  • 47.
    Pang, J.; Tian, J.; Dang, P.; et al. Attainment of large thermal hysteresis and good thermal cyclic stability in multi-component TiHfZrNi alloys. Mater. 2024, 249, 116164. https://doi.org/10.1016/j.scriptamat.2024.116164.
  • 48.
    Li, H.F.; Fei, N.; Yufeng, Z.; et al. Nanocrystalline Ti2Ni50.8shape memory alloy as orthopaedic implant material with better performance. J. Mater. Sci. Technol. 2019, 35, 2156–2162. https://doi.org/10.1016/j.jmst.2019.04.026.
  • 49.
    Baitab, D.M.; Majid, D.L.A.H.A.; Abdullah, E.; et al. A review of techniques for embedding shape memory alloy (SMA) wires in smart woven composites. J. Eng. Technol. 2018, 7, 129–136. https://doi.org/10.14419/ijet.v7i4.13.21344.
  • 50.
    Gall, K.; Maier, H.J. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta 2002, 50, 4643–4657. https://doi.org/10.1016/s1359-6454(02)00315-4.
  • 51.
    Morin, C.; Moumni, Z.; Zaki, W. Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling. J. Plast. 2011, 27, 1959–1980. https://doi.org/10.1016/j.ijplas.2011.05.005.
  • 52.
    Wei, P.; Hua, P.; Xia, M.; et al. Bending fatigue life enhancement of NiTi alloy by pre-strain warm surface mechanical attrition treatment. Acta 2022, 240, 118269. https://doi.org/10.1016/j.actamat.2022.118269.
  • 53.
    Benafan, O.; Brown, J.; Calkins, F.T.; et al. Shape memory alloy actuator design: CASMART collaborative best practices and case studies. J. Mech. Mater. Des. 2014, 10, 1–42. https://doi.org/10.1007/s10999-013-9227-9.
  • 54.
    Lagoudas, D.C.; Entchev, P.B.; Popov, P.; et al. Shape memory alloys, Part II: Modeling of polycrystals. Mater. 2006, 38, 430–462. https://doi.org/10.1016/j.mechmat.2005.08.003.
  • 55.
    Wang, W.; Ji, Y.; Fang, M.; et al. Reentrant strain glass transition in Ti-Ni-Cu shape memory alloy. Acta 2022, 226, 117618. https://doi.org/10.1016/j.actamat.2022.117618.
  • 56.
    Zhu, J.N.; Zhu, W.; Borisov, E.; et al. Effect of heat treatment on microstructure and functional properties of additively manufactured NiTi shape memory alloys. Alloys Compd. 2023, 967, 171740. https://doi.org/10.1016/j.jallcom.2023.171740.
  • 57.
    Jena, D.; Dora, T.R.K.; Vardhan, A.V.; et al. Micro-texture and residual stress evolution in shot peened superelastic Ni-Ti/Ni-Ti-Co shape memory alloys. Coat. Technol. 2024, 479, 130529. https://doi.org/10.1016/j.surfcoat.2024.130529.
  • 58.
    Milyutin, V.A.; Bureš, R.; Fáberová, M.; et al. Multi-component soft magnetic alloy FeNiCoAl4Mo0.1Si0.4B0.1with high frequency stability of permeability. Mater. Sci. Eng. B 2023, 293, 116485. https://doi.org/10.1016/j.mseb.2023.116485.
  • 59.
    Cai, M.; Wang, J.; Wang, Q.; et al. Improvement of soft-magnetic properties for Fe-based amorphous alloys with high saturation polarization by stress annealing. Res. Lett. 2023, 11, 595–603. https://doi.org/10.1080/21663831.2023.2199044.
  • 60.
    Li, X.; Zhou, J.; Shen, L.; et al. Exceptionally High Saturation Magnetic Flux Density and Ultralow Coercivity via an Amorphous–Nanocrystalline Transitional Microstructure in an FeCo-Based Alloy. Mater. 2022, 35, 2205863. https://doi.org/10.1002/adma.202205863.
  • 61.
    Premkumar, M.; Mitra, A.; Arun, P.; et al. Magnetostriction of Fe-rich FeSiB(P)NbCu amorphous and nanocrystalline soft-magnetic alloys. Alloys Compd. 2023, 960, 170760. https://doi.org/10.1016/j.jallcom.2023.170760.
  • 62.
    Luo, T.; Xu, J.; Wang, G.; et al. Composition dependence of amorphous forming, crystallization behavior, magnetic and electronic properties of silicon-rich FeSiBCuNb alloys. Magn. Magn. Mater. 2020, 505, 166714. https://doi.org/10.1016/j.jmmm.2020.166714.
  • 63.
    Haneczok, G.; Wroczyński, R.; Kwapuliński, P.; et al. Electro/magnetic shielding effectiveness of soft magnetic Fe80Nb6B14 amorphous alloy. Mater. Process. Technol. 2009, 209, 2356–2360. https://doi.org/10.1016/j.jmatprotec.2008.05.026.
  • 64.
    Zhou, J.; Li, X.; Hou, X.; et al. Ultrahigh Permeability at High Frequencies via A Magnetic-Heterogeneous Nanocrystallization Mechanism in an Iron-Based Amorphous Alloy. Mater. 2023, 35, 2304490. https://doi.org/10.1002/adma.202304490.
  • 65.
    Chen, Z.; Kang, S.; Zhu, Q.; et al. Tailoring the thermal stability and soft magnetic properties of Fe80-Ni Si7B8P4Cu1amorphous nanocrystalline alloys based on the magnetic domain structure.  Alloys Compd. 2023, 968, 172116. https://doi.org/10.1016/j.jallcom.2023.172116.
  • 66.
    Zanaeva, E.N.; Bazlov, A.I.; Milkova, D.A.; et al. High-Frequency soft magnetic properties of Fe-Si-B-P-Mo-Cu amorphous and nanocrystalline alloys. Non-Cryst. Solids 2019, 526, 9702. https://doi.org/10.1016/j.jnoncrysol.2019.119702.
  • 67.
    Li, J.; Yu, H.; Luo, P.; et al. Effects of Phosphating Treatment on the Growth of a Phosphate Layer and the Magnetic Properties of Fe-Based Amorphous Magnetic Powder Cores. Electron. Mater. 2023, 52, 5412–5421. https://doi.org/10.1007/s11664-023-10437-3.
  • 68.
    Tokmakova, E.N.; Vvedenskiy, V.Y. Effect of annealing in unsaturated magnetic field on the magnetic properties of an amorphous alloy Fe77Ni1Si9B13. Mater. Sci. Mater. Electron. 2023, 34, 1509. https://doi.org/10.1007/s10854-023-10931-8.
  • 69.
    Lin, J.; Li, X.; Zhou, S.; et al. Effects of heat treatment in air on soft magnetic properties of FeCoSiBPC amorphous core. Non-Cryst. Solids 2022, 597, 121932. https://doi.org/10.1016/j.jnoncrysol.2022.121932.
  • 70.
    Luo, T.; Yang, Y.; Fan, C.; et al. Effects of phosphorus substitution on amorphous formation, crystallization behavior and magnetic properties of FeSiBCuNb alloys. Non-Cryst. Solids 2022, 576, 1286. https://doi.org/10.1016/j.jnoncrysol.2021.121286.
  • 71.
    Li, Y.L.; Dou, Z.X.; Chen, X.M.; et al. Improving the amorphous forming ability and magnetic properties of FeSiBPCu amorphous and nanocrystalline alloys by utilizing carbon. Alloys Compd. 2020, 844, 155767. https://doi.org/10.1016/j.jallcom.2020.155767.
  • 72.
    Li, W.; Yang, Y.H.; Xie, C.X.; et al. Glass formation, crystallization and magnetic properties of high-Fe Fe-metalloid (B, C, and P) melt-spun ribbons. Magn. Magn. Mater. 2020, 498, 166128. https://doi.org/10.1016/j.jmmm.2019.166128.
  • 73.
    Pang, L.L.; Inoue, A.; Zanaeva, E.N.; et al. Nanocrystallization, good soft magnetic properties and ultrahigh mechanical strength for Fe82-85B13-16Si1Cu1amorphous alloys.  Alloys Compd. 2019, 785, 25–37. https://doi.org/10.1016/j.jallcom.2019.01.150.
  • 74.
    Lu, S.; Wang, M.; Zhao, Z. Recent advances and future developments in Fe-based amorphous soft magnetic composites. Non-Cryst. Solids 2023, 616, 122440. https://doi.org/10.1016/j.jnoncrysol.2023.122440.
  • 75.
    Chaudhary, V.; Chaudhary, R.; Banerjee, R.; et al. Accelerated and conventional development of magnetic high entropy alloys. Today 2021, 49, 231–252. https://doi.org/10.1016/j.mattod.2021.03.018.
  • 76.
    Liu, M.; Lei, C.; Wang, Y.; et al. High-throughput preparation for alloy composition design in additive manufacturing: A comprehensive review. Genome Eng. Adv. 2024, 2, e55. https://doi.org/10.1002/mgea.55.
  • 77.
    Li, Z.; Ludwig, A.; Savan, A.; et al. Combinatorial metallurgical synthesis and processing of high-entropy alloys. Mater. Res. 2018, 33, 3156–3169. https://doi.org/10.1557/jmr.2018.214.
  • 78.
    Li, W.; Xie, D.; Li, D.; et al. Mechanical behavior of high-entropy alloys. Mater. Sci. 2021, 118, 100777. https://doi.org/10.1016/j.pmatsci.2021.100777.
  • 79.
    Borkar, T.; Gwalani, B.; Choudhuri, D.; et al. A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta 2016, 116, 63–76. https://doi.org/10.1016/j.actamat.2016.06.025.
  • 80.
    Moorehead, M.; Bertsch, K.; Niezgoda, M.; et al. High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing. Des. 2020, 187, 108358. https://doi.org/10.1016/j.matdes.2019.108358.
  • 81.
    Akbari, A.; Balk, T.J. Combinatorial thin film screening to identify single-phase, non-equiatomic high entropy alloys in the MnFeCoNiCu system. MRS 2019, 9, 750–755. https://doi.org/10.1557/mrc.2019.53.
  • 82.
    Shang, G.; Jiang, L.; Liu, Z.Z.; et al. High-throughput experimental study on the microstructural and compositional variations of mechanical properties for AlCoCrFeNi high entropy alloys. Alloys Compd. 2022, 917, 165513. https://doi.org/10.1016/j.jallcom.2022.165513.
  • 83.
    Zhao, L.; Zhou, Y.; Wang, H.; et al. High-Throughput Synthesis and Characterization of a Combinatorial Materials Library in Bulk Alloys. Mater. Trans. 2021, 52, 1159–1168. https://doi.org/10.1007/s11661-021-06149-0.
  • 84.
    Wang, C.; Han, K.; Liu, X.; et al. First-principles study of hydrogen-vacancy interactions in CoCrFeMnNi high-entropy alloy. Alloys Compd. 2022, 922, 166259. https://doi.org/10.1016/j.jallcom.2022.166259.
  • 85.
    Yu, P.; Feng, R.; Du, J.; et al. Phase transformation assisted twinning in a face-centered-cubic FeCrNiCoAl high entropy alloy. Acta 2019, 181, 491–500. https://doi.org/10.1016/j.actamat.2019.10.012.
  • 86.
    Zhang, Z.Q.; Ketov, S.V.; Fellner, S.; et al. Reactive interdiffusion of an Al film and a CoCrFeNi high-entropy alloy. Des. 2022, 216, 110530. https://doi.org/10.1016/j.matdes.2022.110530.
  • 87.
    Yin, B.; Yoshida, S.; Tsuji, N.; et al. Yield strength and misfit volumes of NiCoCr and implications for short-range-order. Commun. 2020, 11, 2507. https://doi.org/10.1038/s41467-020-16083-1.
  • 88.
    Wu, M.; Wang, S.; Huang, H.; et al. CALPHAD aided eutectic high-entropy alloy design. Lett. 2020, 262, 127175. https://doi.org/10.1016/j.matlet.2019.127175.
  • 89.
    Zhao, D.; Jin, X.; Qiao, J.; et al. Machine-learning-assisted modeling of alloy ordering phenomena at the electronic scale through electronegativity. Phys. Lett. 2024, 124, 0188516. https://doi.org/10.1063/5.0188516.
  • 90.
    Guo, C.; Wei, S.; Wu, Z.; et al. Effect of dual phase structure induced by chemical segregation on hot tearing reduction in additive manufacturing. Des. 2023, 228, 111847. https://doi.org/10.1016/j.matdes.2023.111847.
  • 91.
    Men, Y.; Wu, D.; Hu, Y.; et al. Understanding Alkaline Hydrogen Oxidation Reaction on PdNiRuIrRh High-Entropy-Alloy by Machine Learning Potential. Chem. Int. Ed. 2023, 62, e202217976. https://doi.org/10.1002/anie.202217976.
  • 92.
    Ren, J.C.; Zhou, J.; Butch, C.J.; et al. Predicting single-phase solid solutions in as-sputtered high entropy alloys: High-throughput screening with machine-learning model. Mater. Sci. Technol. 2023, 138, 70–79. https://doi.org/10.1016/j.jmst.2022.07.059.
  • 93.
    Singh, S.; Katiyar, N.K.; Goel, S.; et al. Phase prediction and experimental realisation of a new high entropy alloy using machine learning. Rep. 2023, 13, 4811. https://doi.org/10.1038/s41598-023-31461-7.
  • 94.
    He, S.; Wang, Y.; Zhang, Z.; et al. Interpretable machine learning workflow for evaluation of the transformation temperatures of TiZrHfNiCoCu high entropy shape memory alloys. Des. 2023, 225, 111513. https://doi.org/10.1016/j.matdes.2022.111513.
  • 95.
    Kumar, S.; Pradhan, H.; Shah, N.; et al. Machine learning enabled processing map generation for high-entropy alloy. Mater. 2023, 234, 115543. https://doi.org/10.1016/j.scriptamat.2023.115543.
  • 96.
    Kumar, N.; Sarkar, S.; Anand, T.N.C.; et al. Estimating metal mass flowrate in gas-atomization for metal powder production. Powder 2024, 448, 120238. https://doi.org/10.1016/j.powtec.2024.120238.
  • 97.
    Steven, P.M.; Gary, S.S. A study of liquid metal atomization using close-coupled nozzles, part 1: Gas dynamic behavior. Sprays 2005, 15, 19–40. https://doi.org/10.1615/atomizspr.v15.i1.20.
  • 98.
    Alvarez, K.L.; Baghbaderani, H.A.; Martín, J.M.; et al. Novel Fe-based amorphous and nanocrystalline powder cores for high-frequency power conversion. Magn. Magn. Mater. 2020, 501, 166457. https://doi.org/10.1016/j.jmmm.2020.166457.
  • 99.
    Chang, J.; Zhan, T.; Peng, X.; et al. Improved permeability and core loss of amorphous FeSiB /Ni-Zn ferrite soft magnetic composites prepared in an external magnetic field. Alloys Compd. 2021, 886, 161335. https://doi.org/10.1016/j.jallcom.2021.161335.
  • 100.
    Wang, P.; Zhu, Z.; Liu, J.; et al. Soft magnetic properties regulation of FeSiBC amorphous powders/CIP magnetic powder core with single and double-layer core–shell structure. Magn. Magn. Mater. 2023, 578, 170809. https://doi.org/10.1016/j.jmmm.2023.170809.
  • 101.
    Conteri, R.; Borkar, T.; Nag, S.; et al. Laser additive processing of Fe-Si-B-Cu-Nb magnetic alloys. Manuf. Process. 2017, 29, 175–181. https://doi.org/10.1016/j.jmapro.2017.07.029.
  • 102.
    Zhao, Y.; Bai, Y.; Li, T.; et al. Microstructure and Superelasticity of Cu–Sn Shape-Memory Microwires by Glass-Coated Melt Spinning. Metals2023, 13, 1852. https://doi.org/10.3390/met13111852.
  • 103.
    Salaheldeen, M.; Garcia-Gomez, A.; Corte-León, P.; et al. Manipulation of magnetic and structure properties of Ni2FeSi glass-coated microwires by annealing. Alloys Compd. 2023, 942, 169026. https://doi.org/10.1016/j.jallcom.2023.169026.
  • 104.
    Komova, E.; Varga, M.; Varga, R.; et al. Nanocrystalline glass-coated FeNiMoB microwires. Phys. Lett. 2008, 93, 062502. https://doi.org/10.1063/1.2969057.
  • 105.
    Khatun, H.; Nath, S.D.; Sikder, S.S. Kinetics of crystallization and soft magnetic properties of Co72Fe8B10Si10amorphous alloys.  B Condens. 2024, 691, 416300.
  • 106.
    Amini, N.; Miglierini, M.; Hasiak, M.; et al. Thickness Dependence of Mössbauer Parameters for Fe₇₈Si₉B₁₃ Metallic Glass Ribbons. Acta Pol. A 2017, 131, 666–668. https://doi.org/10.12693/aphyspola.131.666.
  • 107.
    Ma, Y.; Kou, Z.; Yang, W.; et al. A one-step fabrication of soft-magnetic high entropy alloy fiber with excellent strength and flexibility. Commun. 2024, 15, 10549. https://doi.org/10.1038/s41467-024-54984-7.
  • 108.
    Xu, Z.; Ji, Y.; Liu, C.; et al. A polymer-like ultrahigh-strength metal alloy. Nature2024, 633, 575–581. https://doi.org/10.1038/s41586-024-07900-4.
  • 109.
    Liu, G.; Li, S.; Song, C.; et al. High-entropy Ti-Zr-Hf-Ni-Cu alloys as solid-solid phase change materials for high-temperature thermal energy storage. Intermetallics2024, 166, 108177. https://doi.org/10.1016/j.intermet.2023.108177.
  • 110.
    Li, H.X.; Lu, Z.C.; Wang, S.L.; et al. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications. Mater. Sci. 2019, 103, 235–318. https://doi.org/10.1016/j.pmatsci.2019.01.003.
  • 111.
    He, S.; Zhou, X.; Mordehai, D.; et al. Thermal super-jogs control the high-temperature strength plateau in Nb-Mo-Ta-W alloys. Acta 2023, 244, 118539. https://doi.org/10.1016/j.actamat.2022.118539.
  • 112.
    Hua, P.; Xia, M.; Onuki, Y.; et al. Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance. Nanotechnol. 2021, 16, 409–413. https://doi.org/10.1038/s41565-020-00837-5.
  • 113.
    Eggert, B.G.; Delczeg-Czirjak, E.K.; Maccari, F.; et al. Exploring V-Fe-Co-Ni-Al and V-Fe-Co-Ni-Cu high entropy alloys for magnetocaloric applications. Alloys Compd. 2022, 921, 166040. https://doi.org/10.1016/j.jallcom.2022.166040.
  • 114.
    Nai, X.; Chen, H.; Zhao, S.; et al. Investigation on the microstructure, mechanical and electrical properties of Ti3SiC2/Cu joint obtained by Ti25Zr25Ni25Cu25amorphous high entropy alloy and Ag composite filler.  Sci. Eng. A 2023, 877, 145190. https://doi.org/10.1016/j.msea.2023.145190.
Share this article:
How to Cite
Li, R.; Liaw, P. K.; Jiang, J.; Zhang, Y. Advanced Applications for Smart-Metallic Materials. Smart Materials and Devices 2025, 1 (1), 1.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.