2507000953
  • Open Access
  • Article
Microstructural Evolution and Twinning Mechanism in Cold-Drawn CoNiV Medium-Entropy Alloy
  • Lin Deng 1,   
  • Jinru Luo 2, 3, *,   
  • Rongzhi Li 1,   
  • Yong Zhang 1, 4, *

Received: 23 May 2025 | Revised: 19 Jun 2025 | Accepted: 08 Jul 2025 | Published: 10 Jul 2025

Abstract

The microstructural evolution of a CoNiV medium-entropy alloy (MEA) during cold drawing was investigated. The alloy maintains a single-phase FCC structure, with annealing twins in the as-annealed state and deformation twins forming after drawing. Despite its high stacking fault energy, the applied drawing stress (2410 MPa) exceeds the critical twinning stress (1903 MPa), enabling deformation twinning. No 9R phase was observed, which is attributed to its thermodynamic instability, as confirmed by first-principles calculations. These findings clarify the deformation behavior and twin formation mechanism in CoNiV MEAs under severe plastic deformation.

References 

  • 1.
    Li, Y.; Liao, W.-B.; Chen, H.; et al. A low-density high-entropy dual-phase alloy with hierarchical structure and exceptional specific yield strength. Sci. China Mater. 2023, 66, 780–792.
  • 2.
    Wu, Y.D.; Cai, Y.H.; Chen, X.H.; et al. Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater. Des. 2015, 83, 651–660.
  • 3.
    Cantor, B.; Chang, I.T.H.; Knight, P.; et al. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375, 213–218.
  • 4.
    Deng, L.; Li, R.; Luo, J.; et al. Plastic deformation and strengthening mechanism in CoNiV medium-entropy alloy fiber. Int. J. Plast. 2024, 175, 103929.
  • 5.
    Fu, Y.; Li, J.; Luo, H.; et al. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys. J. Mater. Sci. Technol. 2021, 80, 217–233.
  • 6.
    Chen, Y.; Wang, S.; Feng, H.; et al. Irradiation hardening behavior of high entropy alloys using random field theory informed discrete dislocation dynamics simulation. Int. J. Plast. 2023, 162, 103497.
  • 7.
    Deng, L.; Bai, C.-Y.; Jiang, Z.-T.; et al. Effect of B4C particles addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy. Mater. Sci. Eng. A 2021, 822, 141642. https://doi.org/10.1016/j.msea.2021.141642.
  • 8.
    Li, R.; Liaw, P.K.; Jiang, J.; et al. Advanced Applications for Smart-Metallic Materials. Smart Mater. Devices 2025, 1, 100001.
  • 9.
    Bai, C.; Tu, J.; Yang, L.; et al. Synergistic enhancement of strength-ductility through multi-phase heterogeneous structure induced by SiC particle addition in CoCrFeNi high entropy alloy. Mater. Sci. Eng. A 2025, 924, 147753.
  • 10.
    Yi, M.; Tu, J.; Yang, L.; et al. Microstructural mechanisms endowing high strength-ductility synergy in CoCrNi medium entropy alloy prepared by laser powder bed fusion. Addit. Manuf. 2024, 87, 104229. https://doi.org/10.1016/j.addma.2024.104229.
  • 11.
    Amar, A.; Wang, M.; Huang, R.; et al. Ultra-strong and ductile medium entropy alloy with a dual heterogeneous microstructure. Acta Mater. 2024, 284, 120645.
  • 12.
    Cai, W.; Long, Q.; Lu, S.; et al. Enhanced strength-ductility synergy in medium entropy alloy via phase selective precipitation. Int. J. Plast. 2025, 184, 104204. https://doi.org/10.1016/j.ijplas.2024.104204.
  • 13.
    An, F.; Hou, J.; Liu, J.; et al. Deformable κ phase induced deformation twins in a CoNiV medium entropy alloy. Int. J. Plast. 2023, 160, 103509.
  • 14.
    Xu, L.; Ma, Y.; Zhang, Z.; et al. Superior tensile properties induced by triple-level heterogeneous structures in the CoNiV-based medium-entropy alloy. J. Mater. Sci. Technol. 2025, 214, 245–254. https://doi.org/10.1016/j.jmst.2024.07.020.
  • 15.
    Xu, B.; Duan, H.; Chen, X.; et al. Harnessing instability for work hardening in multi-principal element alloys. Nat. Mater. 2024, 23, 755–761.
  • 16.
    Lee, B.J.; Shim, S.H.; Lee, H.B.; et al. Deformation-induced multi-step TRIP/TWIP (fcc, hcp) behaviors in metastable Fe55Mn25Co10Cr10 high-entropy alloy at ambient and cryogenic temperatures. Mater. Sci. Eng. A 2024, 913, 147030.
  • 17.
    Mu, Y.; Liang, Y.; Sheng, J.; et al. A novel approach to coating for improving the comprehensive high-temperature service performance of TiAl alloys. Acta Mater. 2025, 283, 120500.
  • 18.
    Zhang, C.; Wang, R.; Pan, K.; et al. Preparation and enhanced oxidation behavior of microalloyed Mo5SiB2 alloy at 1300 °C. Mater. Charact. 2022, 189, 112001.
  • 19.
    Deng, L.; Luo, J.-R.; Tu, J.; et al. Achieving excellent mechanical properties of ODS steel by Y2O3 addition. Mater. Sci. Eng. A 2023, 872, 145008.
  • 20.
    Zhang, J.; Zhou, D.; Pang, X.; et al. Deformation-induced concurrent formation of 9R phase and twins in a nanograined aluminum alloy. Acta Mater. 2023, 244, 118540.
  • 21.
    Nutor, R.K.; Xu, T.; Wang, X.; et al. Liquid helium temperature deformation and local atomic structure of CoNiV medium entropy alloy. Mater. Today Commun. 2022, 30, 103141.
  • 22.
    Xue, S.; Fan, Z.; Lawal, O.B.; et al. High-velocity projectile impact induced 9R phase in ultrafine-grained aluminium. Nat. Commun. 2017, 8, 1653.
  • 23.
    Zhang, Z.; Jiang, Z.; Xie, Y.; et al. Multiple deformation mechanisms induced by pre-twinning in CoCrFeNi high entropy alloy. Scr. Mater. 2022, 207, 114266.
  • 24.
    Wang, L.X.; Xiang, S.; Tan, Y.B.; et al. The role of 9R structures on deformation-induced martensitic phase transformations in dual-phase high-entropy alloys. Mater. Sci. Eng. A 2022, 853, 143705.
  • 25.
    Deng, L.; Luo, J.; Liang, Y.; et al. Synergistic increasing the Strength–Elasticity in a CoNiV medium-entropy alloy via cold drawing. Mater. Sci. Eng. A 2025, 941, 148577.
  • 26.
    Sahu, B.R. Electronic structure and bonding of ultralight LiMg. Mater. Sci. Eng. B 1997, 49, 74–78.
  • 27.
    Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D. The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt.% Mn–0.6 wt.% C TWIP steel. Mater. Sci. Eng. A 2010, 527, 3552–3560.
  • 28.
    Vega, G.; Haddi, A.; Imad, A. Investigation of process parameters effect on the copper-wire drawing. Mater. Des. 2009, 30, 3308–3312.
Share this article:
How to Cite
Deng, L.; Luo, J.; Li, R.; Zhang, Y. Microstructural Evolution and Twinning Mechanism in Cold-Drawn CoNiV Medium-Entropy Alloy. Smart Materials and Devices 2025, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.