2509001425
  • Open Access
  • Review

Superplasticity and Superelasticity of Structural-Functional Alloys

  • Chenlu Pan 1,   
  • Huixiang Lu 1,   
  • Ke Zhang 1,   
  • Aiying Chen 1,   
  • Zhiyi Ding 1, *,   
  • Feiyang Liu 2,   
  • Andriy Lifanov 2

Received: 19 Aug 2025 | Revised: 01 Sep 2025 | Accepted: 24 Sep 2025 | Published: 11 Oct 2025

Abstract

Shape-memory alloys (SMAs) inherently possess dual actuation and sensing capabilities. Excellent superelasticity and fatigue resistance are crucial for the service reliability and stability of SMAs. This review summarizes the microstructure, functional properties, strengthening mechanisms, and failure mechanisms of the most widely used NiTi-based SMA, Gum Metals, novel NiMn-based SMAs, and newly developed Fe-based alloys. The high strength and toughness of NiTi SMA contribute to its excellent fatigue performance, achieved through microalloying, structural design, and grain size engineering. Texture toughening strategies overcome the intergranular brittleness inherent in traditional NiMn-based SMAs. Alloy design strategies enable the development of iron-based superelastic alloys exhibiting near-constant critical stress temperature dependence, overcoming the conventional limitation in superelastic alloys where critical stress decreases significantly with decreasing temperature. The principles and implementation strategies for controlling superelasticity and superplasticity in SMAs provide valuable guidance for designing and applying structure-function-integrated materials.

References 

  • 1.
    Lu, K. Making strong nanomaterials ductile with gradients. Science 2014, 345, 1455–1456.
  • 2.
    Ma, E.; Zhu, T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 2017, 20, 323–331.
  • 3.
    Ovid’Ko, I.A.; Valiev, R.Z.; Zhu, Y.T. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog. Mater. Sci. 2018, 94, 462–540.
  • 4.
    Li, X.T.; Liu, R.; Hou, J.P.; et al. Trade-off model for strength-ductility relationship of metallic materials. Acta Mater. 2025, 289, 120942.
  • 5.
    Meyers, M.; Mishra, A.; Benson, D.; et al. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2005, 51, 427–556.
  • 6.
    Christoph, C.B.; Ge, W.W.; Li, M.M.; et al. Ultralow-fatigue shape memory alloy films. Science 2015, 348, 1004–1007.
  • 7.
    Hao, S.; Cui, L.; Jiang, D.; et al. A Transforming Metal Nanocomposite with Large Elastic Strain, Low Modulus, and High Strength. Science 2013, 339, 1191–1194.
  • 8.
    Hua, P.; Xia, M.L.; Onuki, Y.; et al. Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance. Nat. Nanotechnol. 2021, 16, 409–413.
  • 9.
    Mahsa, N.; Ville, L.; Alexei, S.; et al. Effects of 1 at.% additions of Co, Fe, Cu, and Cr on the properties of Ni-Mn-Ga-based magnetic shape memory alloys. Scr. Mater. 2023, 224, 115116.
  • 10.
    Tong, W.; Liang, L.; Xu, J.; et al. Achieving enhanced mechanical, pseudoelastic and elastocaloric properties in Ni-Mn-Ga alloys via Dy micro-alloying and isothermal mechanical cyclic training. Scr. Mater. 2022, 209, 114393.
  • 11.
    Jia, Z.; Chen, Z.; Zhang, Y.; et al. Huge high-temperature superelasticity and complete strains recovery above 773 K in Ni–Mn–Ga-based microwire. Appl. Phys. Lett. 2025, 126. https://doi.org/10.1063/5.0267990.
  • 12.
    Tanaka, Y.; Himuro, Y.; Kainuma, R.; et al. Ferrous Polycrystalline Shape-Memory Alloy Showing Huge Superelasticity. Science 2010, 327, 1488–1490.
  • 13.
    Xia, J.; Noguchi, Y.; Kainuma, R.; et al. Iron-based superelastic alloys with near-constant critical stress temperature dependence. Science 2020, 369, 855–858.
  • 14.
    Beihai, H.; Bo, X.; Sen, T.; et al. Effect of aspect ratio on the elastocaloric effect and its cyclic stability of nanocrystalline NiTi shape memory alloy. J. Mater. Res. Technol. 2023, 25, 6288–6302.
  • 15.
    Xu, F.; Zhu, C.; Wang, J.; et al. Enhanced elastocaloric effect and mechanical properties of Gd-doped Ni-Co-Mn-Ti-Gd metamagnetic shape memory alloys. J. Alloys Compd. 2023, 960, 170768.
  • 16.
    Lu, N.H.; Chen, C.H. Improving the functional stability of TiNi-based shape memory alloy by multi-principal element design. Mater. Sci.Eng. A 2023, 872, 144999.
  • 17.
    Cheng, F.; Qiu, C.X.; Zheng, Y.; et al. Shape Memory Alloys for Civil Engineering. Materials 2023, 16, 787.
  • 18.
    Dornelas, V.D.; Oliveira, A.S.; Savi, M.; et al. Fatigue on shape memory alloys: Experimental observations and constitutive modeling. Int. J. Solids Struct. 2020, 213, 1–24.
  • 19.
    Norfleet, D.M.; Sarosi, P.M.; Manchiraju, S.; et al. Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals. Acta Mater. 2009, 57, 3549–3561.
  • 20.
    Ahadi, A.; Ghorabaei, A.S.; Shirazi, H.; et al. Bulk NiTiCuCo shape memory alloys with ultra-high thermal and superelastic cyclic stability. Scr. Mater. 2021, 200, 113899.
  • 21.
    Shahmir, H.; Nili-Ahmadabadi, M.; Huang, Y.; et al. Shape memory characteristics of a nanocrystalline TiNi alloy processed by HPT followed by post-deformation annealing. Mater. Sci. Eng. A 2018, 734, 445–452.
  • 22.
    Li, Z.H.; Xiang, G.Q.; Cheng, X.H.; et al. Effects of ECAE process on microstructure and transformation behavior of TiNi shape memory alloy. Mater. Des. 2006, 27, 324–328.
  • 23.
    Sidharth, R.; Celebi, T.B.; Sehitoglu, H. Origins of functional fatigue and reversible transformation of precipitates in NiTi shape memory alloy. Acta Mater. 2024, 274, 119990.
  • 24.
    Timofeeva, E.E.; Panchenko, E.Y.; Zherdev, M.V.; et al. Effect of one family of Ti3Ni4 precipitates on shape memory effect, superelasticity and strength properties of the B2 phase in high-nickel [001]-oriented Ti-51.5 at.%Ni single crystals. Mater. Sci. Eng. A 2022, 832, 142420.
  • 25.
    Xuan, J.M.; Gao, J.J.; Ding, Z.Y.; et al. Improved superelasticity and fatigue resistance in nano-precipitate strengthened Ni50Mn23Ga22Fe4Cu1 microwire. J. Alloys Compd. 2021, 877, 160296.
  • 26.
    Sobrero, C.; Lauhoff, C.; Langenkämper, D.; et al. Impact of test temperature on functional degradation in Fe-Ni-Co-Al-Ta shape memory alloy single crystals. Mater. Lett. 2021, 291, 129430.
  • 27.
    Villa, E.; D’Eril, M.M.; Nespoli, A.; et al. The role of γ-phase on the thermo-mechanical properties of NiMnGaFe alloys polycrystalline samples. J. Alloys Compd. 2018, 763, 883–890.
  • 28.
    Omori, T.; Ando, K.; Okano, M.; et al. Superelastic Effect in Polycrystalline Ferrous Alloys. Science 2011, 333, 68–71.
  • 29.
    Hong, H.; Gencturk, B.; Saiidi, M.S. Material characterization of iron-based shape memory alloys for use in self-centering columns. Smart Mater. Struct. 2024, 33, 075001.
  • 30.
    Choi, W.S.; Pang, E.I.; Ko, W.S.; et al. Orientation-dependent plastic deformation mechanisms and competition with stress-induced phase transformation in microscale NiTi. Acta Mater. 2021, 208, 116731.
  • 31.
    Li, Q.; Chen, Y.; Liu, Y.; et al. Non-linear temperature dependences of pseudoelastic stress and stress hysteresis of a nanocrystalline Ni47Ti50Fe3 alloy. Acta Mater. 2024, 265, 119625.
  • 32.
    Li, R.; Liaw, P.K.; Jiang, J.; et al. Advanced Applications for Smart-Metallic Materials. Smart Mater. Devices 2025, 1, 1.
  • 33.
    Wang, X.B.; Kustov, S.; Li, K.; et al. Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti50.8 at.% Ni alloy with micron-sized grains. Acta Mater. 2015, 82, 224–233.
  • 34.
    Lu, H.Z.; Liu, L.H.; Yang, C.; et al. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting. J. Mater. Sci. Technol. 2022, 101, 205–216.
  • 35.
    Xu, B.; Wang, C.; Wang, Q.Y.; et al. Toward tunable shape memory effect of NiTi alloy by grain size engineering: A phase field study. J. Mater. Sci. Technol. 2024, 168, 276–289.
  • 36.
    Chaithany, K.N.; Pagare, A.; Brokmeier, H.G.; et al. Transformation textures in Ni rich NiTi shape memory alloy. Mater. Sci. Eng. A 2022, 835, 142594.
  • 37.
    Chumlyakov, Y.I.; Kireev, I.V.; Vyrodova, A.V.; et al. Effect of marforming on superelasticity and shape memory effect of [001]-oriented Ni50.3Ti49.7 alloy single crystals under compression. J. Alloys Compd. 2022, 896, 162841.
  • 38.
    Zu, X.; Wen, H.; Peng, Z.; et al. Enhanced Functional Fatigue Resistance of Cu-Al-Mn Superelastic Wire Bamboo-Like Grain Structure. Fatigue Fract. Eng. Mater. Struct. 2025, 48, 1248–1260.
  • 39.
    Sehitoglu, H.; Wu, Y.; Ertekin, E.; et al. Elastocaloric effects in the extreme. Scr. Mater. 2018, 148, 122–126.
  • 40.
    Sedmák, P.; Šittner, P.; Pilch, J.; et al. Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction. Acta Mater. 2015, 94, 257–270.
  • 41.
    Ryu, H.; Lee, Z.F.; Kim, J.Y.; et al. Cyclic stability in NiTi and NiTiCu thin films: Role of precipitates in low-and high-cycle regimes. Scr. Mater. 2024, 250, 116189.
  • 42.
    Chen, H.; Xiao, F.; Liang, X.; et al. Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44Ni-5Cu-1Al (at%) alloy. Acta Mater. 2018, 158, 330–339.
  • 43.
    Battaglia, M.; Sellitto, A.; Giamundo, A.; et al. Advanced material thermomechanical modelling of shape memory alloys applied to automotive design. Shape Mem. Superelasticity 2024, 10, 297–313.
  • 44.
    Wu, Y.; Ertekin, E.; Sehitoglu, H.; et al. Elastocaloric cooling capacity of shape memory alloys—Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation. Acta Mater. 2017, 135, 158–176.
  • 45.
    Li, X.; Liang, Q.; Dong, T.; et al. Fatigue-resistant elastocaloric effect in hypoeutectic TiNi58 alloy with heterogeneous microstructure. Acta Mater. 2024, 262,119464.
  • 46.
    Tong, Y.X.; Shuitcev, A.; Zheng, Y.F.; et al. Development of TiNi-based shape memory slloys with high cycle stability and high transformation temperature. Adv. Eng. Mater. 2020, 22, 1900496.
  • 47.
    Cui, J.; Chu, Y.S.; Famodu, O.O.; et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 2006, 5, 286–290.
  • 48.
    Xue, D.Q.; Li, Z.H.; Pan, Y.; et al. Low hysteresis and high cyclic stability in a Ti50Ni45.2Cu1Fe3.8 shape memory alloy. J. Alloys Compd. 2023, 955, 170188.
  • 49.
    Kockar, B.; Karaman, I.; Kim, J.I.; et al. A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys. Scr. Mater. 2006, 54, 2203–2208.
  • 50.
    Lua, H.Z.; Ma, H.W.; Cai, W.S.; et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting. Acta Mater. 2021, 219, 117261.
  • 51.
    Peng, C.; Liu, Y.F.; Min, N.; et al. Enhanced two-way shape memory effect in nanocrystalline NiTi shape memory alloy wires. Scr. Mater. 2023, 236, 115669.
  • 52.
    Ahadi, A.; Sun, Q. Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction. Acta Mater. 2015, 90, 272–281.
  • 53.
    Li, Z.; Cai, J.; Zhao, Z.; et al. Local chemical inhomogeneity enables superior strength-ductility-superelasticity synergy in additively manufactured NiTi shape memory alloys. Nat. Commun. 2025, 16, 1941.
  • 54.
    Surikov, N.Y.; Panchenko, E.; Chumlyakov, Y.I.; et al. Cyclic stability of the elastocaloric effect in heterophase [001]-oriented TiNi single crystals. Appl. Phys. Lett. 2024, 125, 151901.
  • 55.
    Tobushi, H.; Iwanaga, H.; Tanaka, K.; et al. Deformation behaviour of TiNi shape memory alloy subjected to variable stress and temperature. Contin. Mech. Thermodyn. 1991, 3, 79–93.
  • 56.
    Dao, M.; Lu, L.; Asaro, R.J.; et al. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 2007, 55, 4041–4065.
  • 57.
    Tyc, O.; Iaparova, E.; Molnárová; O; et al. Stress induced martensitic transformation in NiTi at elevated temperatures: Martensite variant microstructures, recoverable strains and plastic strains. Acta Mater. 2024, 279, 120287.
  • 58.
    Toghani-Taheri, F.; Khodabakhshi, F.; Malekan, M.; et al. Cyclic pseudoelastic behavior of friction stir processed NiTi shape memory alloy: Microstructure and W-alloying. Mater. Sci. Eng. A 2025, 927,148000.
  • 59.
    Waitz, T.; Kazykhanov, V.; Karnthaler, H.P.; et al. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 2003, 52, 137–147.
  • 60.
    Gall, K.; Maier, H.J. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater. 2002, 50, 4643–4657.
  • 61.
    He, Q.F.; Wang, J.G.; Chen, H.A.; et al. A highly distorted ultraelastic chemically complex Elinvar alloy. Nature 2022, 602, 251–257.
  • 62.
    Saito, T.; Furuta, T.; Hwang, J.H.; et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 2003, 300, 464–467.
  • 63.
    Jarząbek, D.M.; Włoczewski, M.; Milczarek, M.; et al. Deformation Mechanisms of (100) and (110) Single-Crystal BCC Gum Metal Studied by Nanoindentation and Micropillar Compression. Metall. Mater. Trans. A 2024, 55, 4954–4964.
  • 64.
    Sankaran, R.P.; Ozdol, V.B.; Ophus, C.; et al. Multiscale analysis of nanoindentation-induced defect structures in gum metal. Acta Mater. 2018, 151, 334–346.
  • 65.
    Yang, Y.; Xu, D.; Cao, S.; et al. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy. J. Mater. Sci. Technol. 2021, 73, 52–60.
  • 66.
    Yang, Y.; Zhang, B.; Meng, Z.; et al. {332}<113> Twinning transfer behavior and its effect on the twin shape in a beta-type Ti-23.1Nb-2.0Zr-1.0O alloy. J. Mater. Sci. Technol. 2021, 91, 58–66.
  • 67.
    da Silva, M.R.; Plaine, A.H.; Pinotti, V.E.; et al. A review of Gum Metal: Developments over the years and new perspectives. J. Mater. Res. 2023, 38, 96–111.
  • 68.
    Kanapaakala, G.; Subramani, V. A comprehensive review of Gum metal’s potential as a biomedical material. Proceedings of the Institution of Mechanical Engineers. Part L J. Mater. Des. Appl. 2024, 238, 1200–1225.
  • 69.
    Yuan, S.; Lin, N.; Zeng, Q.; et al. Recent advances in gum metal: Synthesis, performance and application. Crit. Rev. Solid State Mater. Sci. 2023, 48, 257–288.
  • 70.
    Tong, Y.X.; Gu, H.L.; James, R.D.; et al. Novel TiNiCuNb shape memory alloys with excellent thermal cycling stability. J. Alloys Compd. 2019, 782, 343–347.
  • 71.
    Gomez-Cort, J.F.; Czaja, P.; Szczerba, M.J.; et al. Extremely stable stress-induced martensitic transformation at the nanoscale during superelastic cycling of Ni51Mn28Ga21 shape memory alloy. Mater. Sci. Eng. A 2023, 881, 145339.
  • 72.
    Jaronie, M.J.; Martin, L.; Aleksandar, S.; et al. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2013, 56, 1078–1113.
  • 73.
    Guo, J.P.; Wei, Z.Y.; Shen, Y.; et al. Low-temperature superelasticity and elastocaloric effect in textured Ni–Mn–Ga–Cu shape memory alloys. Scr. Mater. 2020, 185, 56–60.
  • 74.
    Dunand, D.C.; Müllner, P. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys. Adv. Mater. 2011, 23, 216–232.
  • 75.
    Tian, Y.; Hu, B.; Dang, P.; et al. Noise-Aware Active Learning to Develop High-Temperature Shape Memory Alloys with Large Latent Heat. Adv. Sci. 2024, 11, 2406216.
  • 76.
    Checa, P.; Feuchtwanger, J.; Musiienko, D.; et al. High temperature Ni45Co5Mn25−xFexGa20Cu5 ferromagnetic shape memory alloys. Scr. Mater. 2017, 134, 119–122.
  • 77.
    Müllner, P. Magnetic Interactions of Disconnections and Fatigue of Ni-Mn-Ga. Acta Mater. 2025, 298, 121414.
  • 78.
    Li, X.; Wang, K.; Li, Y.; et al. Mechanical and Magnetic Properties of Porous Ni50Mn28Ga22 Shape Memory Alloy. Metals 2024, 14, 291.
  • 79.
    Ding, Z.Y.; Liu, D.X.; Qi, Q.L.; et al. Multistep superelasticity of Ni-Mn-Ga and Ni-Mn-Ga-Co-Cu microwires under stress-temperature coupling. Acta Mater. 2017, 140, 326–336.
  • 80.
    Zhang, X.X.; Witherspoon, C.; Müllner, P.; et al. Effect of pore architecture on magnetic-field-induced strain in polycrystalline Ni–Mn–Ga. Acta Mater. 2010, 59, 2229–2239.
  • 81.
    Wang, K.Y.; Hou, R.H.; Xuan, J.M.; et al. Shape memory effect and superelasticity of Ni50Mn30Ga20 porous alloy prepared by imitation casting method. Intermetallics 2022, 149, 1007668.
  • 82.
    Salaheldeen, M.; Zhukova, V.; Blanco, J.M.; et al. The impact of high-temperature annealing on magnetic properties, structure and martensitic transformation of Ni2MnGa-based glass-coated microwires. Ceram. Int. 2025, 51, 4378–4387.
  • 83.
    Zhang, J.X.; Ding, Z.Y.; Hou, R.H.; et al. Giant high temperature superelasticity in Ni53Mn24Ga21Co1Cu1 microwires. Intermetallics 2020, 122, 106799.
  • 84.
    Ueland, S.M.; Schuh, A.C. Superelasticity and fatigue in oligocrystalline shape memory alloy microwires. Acta Mater. 2012, 60, 282–292.
  • 85.
    Chen, Z.; Cong, D.; Ren, Y.; et al. Ferroelastic oligocrystalline microwire with unprecedented high-temperature superelastic and shape memory effects. NPG Asia Mater. 2022, 14, 17.
  • 86.
    Lee, W.J.; Weber, B.; Leinenbach, C.; et al. Recovery stress formation in a restrained Fe–Mn–Si-based shape memory alloy used for prestressing or mechanical joining. Constr. Build. Mater. 2015, 95, 600–610.
  • 87.
    Cassinerio, J.; Giordana, M.F.; Zelaya, E.; et al. On the impact of γ precipitates on the transformation temperatures in Fe–Ni–Co–Al–Ti–B shape memory alloy wires. Shape Mem. Superelasticity 2024, 10, 37–44.
  • 88.
    Lehnert, R.; Müller, M.; Vollmer, M.; et al. On the influence of crystallographic orientation on superelasticity—Fe-Mn-Al-Ni shape memory alloys studied by advanced in situ characterization techniques. Mater. Sci. Eng. A 2023, 871, 144830.
  • 89.
    Vollmer, M.; Arold, T.; Kriegel, M.J.; et al. Promoting abnormal grain growth in Fe-based shape memory alloys through compositional adjustments. Nat. Commun. 2019, 10, 2337.
  • 90.
    Felice, I.O.; Shen, J.J.; Barragan, A.; et al. Wire and arc additive manufacturing of Fe-based shape memory alloys: Microstructure, mechanical and functional behavior. Mater. Des. 2023, 231, 112004.
  • 91.
    Zhao, G.D.; Cui, Y.; Zhang, Y.; et al. Abnormal grain growth of FeMnAlNiCo shape memory alloys during directional recrystallisation. J. Mater. Res. Technol. 2023, 23, 819–829.
  • 92.
    Yuan, W.; Shi, F.; Zhang, C.; et al. Influence of cyclic degradation behaviors in shape memory alloy on the seismic performance of structures. J. Build. Eng. 2025, 111, 113461.
  • 93.
    Hamidreza, K.; Mahmoud, N.; Faezeh, K.J.; et al. The effect of high-pressure torsion on the microstructure and outstanding pseudoelasticity of a ternary Fe–Ni–Mn shape memory alloy. Mater. Sci. Eng. A 2021, 802, 140647.
  • 94.
    Ding, Z.; Lv, X.; Wang, D.; et al. Multi-step phase-transformation of Ni-Mn-Ga smart microwires under stress-and strain-controlled tensile modes. Smart Mater. Struct. 2025, 34, 065032.
  • 95.
    Hilscher, M.; Jübner, P.; Ghafoori, E. Iron-Based Shape Memory Alloys in Construction: A Review of Research, Applications, and Challenges. Shape Mem. Superelasticity 2025, 1–15. https://doi.org/10.1007/s40830-025-00560-x.
  • 96.
    Golrang, M.; Mohri, M.; Ghafoori, E.; et al. Tailoring functional properties of a FeMnSi shape memory alloy through thermo-mechanical processing. J. Mater. Res. Technol. 2024, 291, 1887–1900.
  • 97.
    Abuzaid, W.; Sehitoglu, H.Y. Superelasticity and functional fatigue of single crystalline FeNiCoAlTi iron-based shape memory alloy. Mater. Des. 2018, 160, 642–651.
  • 98.
    Deng, L.; Luo, J.; Li, R.; et al. Microstructural Evolution and Twinning Mechanism in Cold-Drawn CoNiV Medium-Entropy Alloy. Smart Mater. Devices 2025, 1, 2.
  • 99.
    Sozinov, A.; Lanska, N.; Soroka, A.; et al. 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite. Appl. Phys. Lett. 2013, 102, 021902.
  • 100.
    Vronka, M.; Straka, L.; Klementová; M; et al. Unexpected modulation revealed by electron diffraction in Ni-Mn-Ga-Co-Cu tetragonal martensite exhibiting giant magnetic field-induced strain. Scr. Mater. 2024, 242, 115901.
  • 101.
    Petr, C.; Daria, D.; Kristian, M.; et al. Exceptionally small Young modulus in 10M martensite of Ni-Mn-Ga exhibiting magnetic shape memory effect. Acta Mater. 2023, 257, 119–133.
  • 102.
    Yu, Q.; Wang, J.; Liang, C.; et al. A Giant Magneto-Superelasticity of 5% Enabled by Introducing Ordered Dislocations in Ni34Co8Cu8Mn36Ga14 Single Crystal. Adv. Sci. 2024, 240, 1–9.
  • 103.
    Zhen, L.Z.; Zong, L.B.; Yun, L.Z.; et al. Enhanced elastocaloric effect and refrigeration properties in a Si-doped Ni-Mn-In shape memory alloy. J. Mater. Sci. Technol. 2022, 117, 167–173.
  • 104.
    Alexei, S.; Likhachev, A.A.; Ullakko, K.; et al. Magnetic and magnetomechanical properties of Ni-Mn-Ga alloys with easy axis and easy plane of magnetization. Smart Mater. Struct. 2001, 4333, 189–196.
  • 105.
    Qu, Y.; Cong, D.; Li, S.; et al. Simultaneously achieved large reversible elastocaloric and magnetocaloric effects and their coupling in a magnetic shape memory alloy. Acta Mater. 2018, 151, 41–55.
  • 106.
    Peng, C.T.; Zhen, Z.J.; Jia, X.; et al. Combining magnetocaloric and elastocaloric effects in a Ni45Co5Mn37In13 alloy. J. Mater. Sci. Technol. 2021, 94, 47–52.
  • 107.
    Shi, Z.J.; Ming, Q.F.; Jie, Z.R.; et al. Microstructure and magnetocaloric effect in nonequilibrium solidified Ni-Mn-Sn-Co alloy prepared by laser powder bed fusion. Addit. Manuf. 2024, 79, 103941.
  • 108.
    Wen, S.; Xiang, W.L.; Zhi, Y.; et al. Multicaloric effect in Ni-Mn-Sn metamagnetic shape memory alloys by laser powder bed fusion. Addit. Manuf. 2022, 59, 103125.
  • 109.
    Leinenbach, C.; Kramer, H.; Bernhard, C.; et al. Thermo-Mechanical Properties of an Fe-Mn-Si-Cr-Ni-VC Shape Memory Alloy with Low Transformation Temperature. Adv. Eng. Mater. 2012, 14, 62–67.
  • 110.
    Lee, J.W.; Weber, B.; Feltrin, G.; et al. Stress recovery behaviour of an Fe-Mn-Si-Cr-Ni-VC shape memory alloy used for prestressing. Smart Mater. Struct. 2013, 22, 125037.
Share this article:
How to Cite
Pan, C.; Lu, H.; Zhang, K.; Chen, A.; Ding, Z.; Liu, F.; Lifanov, A. Superplasticity and Superelasticity of Structural-Functional Alloys. Smart Materials and Devices 2025, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.