- 1.
Lu, K. Making strong nanomaterials ductile with gradients. Science 2014, 345, 1455–1456.
- 2.
Ma, E.; Zhu, T. Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 2017, 20, 323–331.
- 3.
Ovid’Ko, I.A.; Valiev, R.Z.; Zhu, Y.T. Review on superior strength and enhanced ductility of metallic nanomaterials. Prog. Mater. Sci. 2018, 94, 462–540.
- 4.
Li, X.T.; Liu, R.; Hou, J.P.; et al. Trade-off model for strength-ductility relationship of metallic materials. Acta Mater. 2025, 289, 120942.
- 5.
Meyers, M.; Mishra, A.; Benson, D.; et al. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2005, 51, 427–556.
- 6.
Christoph, C.B.; Ge, W.W.; Li, M.M.; et al. Ultralow-fatigue shape memory alloy films. Science 2015, 348, 1004–1007.
- 7.
Hao, S.; Cui, L.; Jiang, D.; et al. A Transforming Metal Nanocomposite with Large Elastic Strain, Low Modulus, and High Strength. Science 2013, 339, 1191–1194.
- 8.
Hua, P.; Xia, M.L.; Onuki, Y.; et al. Nanocomposite NiTi shape memory alloy with high strength and fatigue resistance. Nat. Nanotechnol. 2021, 16, 409–413.
- 9.
Mahsa, N.; Ville, L.; Alexei, S.; et al. Effects of 1 at.% additions of Co, Fe, Cu, and Cr on the properties of Ni-Mn-Ga-based magnetic shape memory alloys. Scr. Mater. 2023, 224, 115116.
- 10.
Tong, W.; Liang, L.; Xu, J.; et al. Achieving enhanced mechanical, pseudoelastic and elastocaloric properties in Ni-Mn-Ga alloys via Dy micro-alloying and isothermal mechanical cyclic training. Scr. Mater. 2022, 209, 114393.
- 11.
Jia, Z.; Chen, Z.; Zhang, Y.; et al. Huge high-temperature superelasticity and complete strains recovery above 773 K in Ni–Mn–Ga-based microwire. Appl. Phys. Lett. 2025, 126. https://doi.org/10.1063/5.0267990.
- 12.
Tanaka, Y.; Himuro, Y.; Kainuma, R.; et al. Ferrous Polycrystalline Shape-Memory Alloy Showing Huge Superelasticity. Science 2010, 327, 1488–1490.
- 13.
Xia, J.; Noguchi, Y.; Kainuma, R.; et al. Iron-based superelastic alloys with near-constant critical stress temperature dependence. Science 2020, 369, 855–858.
- 14.
Beihai, H.; Bo, X.; Sen, T.; et al. Effect of aspect ratio on the elastocaloric effect and its cyclic stability of nanocrystalline NiTi shape memory alloy. J. Mater. Res. Technol. 2023, 25, 6288–6302.
- 15.
Xu, F.; Zhu, C.; Wang, J.; et al. Enhanced elastocaloric effect and mechanical properties of Gd-doped Ni-Co-Mn-Ti-Gd metamagnetic shape memory alloys. J. Alloys Compd. 2023, 960, 170768.
- 16.
Lu, N.H.; Chen, C.H. Improving the functional stability of TiNi-based shape memory alloy by multi-principal element design. Mater. Sci.Eng. A 2023, 872, 144999.
- 17.
Cheng, F.; Qiu, C.X.; Zheng, Y.; et al. Shape Memory Alloys for Civil Engineering. Materials 2023, 16, 787.
- 18.
Dornelas, V.D.; Oliveira, A.S.; Savi, M.; et al. Fatigue on shape memory alloys: Experimental observations and constitutive modeling. Int. J. Solids Struct. 2020, 213, 1–24.
- 19.
Norfleet, D.M.; Sarosi, P.M.; Manchiraju, S.; et al. Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals. Acta Mater. 2009, 57, 3549–3561.
- 20.
Ahadi, A.; Ghorabaei, A.S.; Shirazi, H.; et al. Bulk NiTiCuCo shape memory alloys with ultra-high thermal and superelastic cyclic stability. Scr. Mater. 2021, 200, 113899.
- 21.
Shahmir, H.; Nili-Ahmadabadi, M.; Huang, Y.; et al. Shape memory characteristics of a nanocrystalline TiNi alloy processed by HPT followed by post-deformation annealing. Mater. Sci. Eng. A 2018, 734, 445–452.
- 22.
Li, Z.H.; Xiang, G.Q.; Cheng, X.H.; et al. Effects of ECAE process on microstructure and transformation behavior of TiNi shape memory alloy. Mater. Des. 2006, 27, 324–328.
- 23.
Sidharth, R.; Celebi, T.B.; Sehitoglu, H. Origins of functional fatigue and reversible transformation of precipitates in NiTi shape memory alloy. Acta Mater. 2024, 274, 119990.
- 24.
Timofeeva, E.E.; Panchenko, E.Y.; Zherdev, M.V.; et al. Effect of one family of Ti3Ni4 precipitates on shape memory effect, superelasticity and strength properties of the B2 phase in high-nickel [001]-oriented Ti-51.5 at.%Ni single crystals. Mater. Sci. Eng. A 2022, 832, 142420.
- 25.
Xuan, J.M.; Gao, J.J.; Ding, Z.Y.; et al. Improved superelasticity and fatigue resistance in nano-precipitate strengthened Ni50Mn23Ga22Fe4Cu1 microwire. J. Alloys Compd. 2021, 877, 160296.
- 26.
Sobrero, C.; Lauhoff, C.; Langenkämper, D.; et al. Impact of test temperature on functional degradation in Fe-Ni-Co-Al-Ta shape memory alloy single crystals. Mater. Lett. 2021, 291, 129430.
- 27.
Villa, E.; D’Eril, M.M.; Nespoli, A.; et al. The role of γ-phase on the thermo-mechanical properties of NiMnGaFe alloys polycrystalline samples. J. Alloys Compd. 2018, 763, 883–890.
- 28.
Omori, T.; Ando, K.; Okano, M.; et al. Superelastic Effect in Polycrystalline Ferrous Alloys. Science 2011, 333, 68–71.
- 29.
Hong, H.; Gencturk, B.; Saiidi, M.S. Material characterization of iron-based shape memory alloys for use in self-centering columns. Smart Mater. Struct. 2024, 33, 075001.
- 30.
Choi, W.S.; Pang, E.I.; Ko, W.S.; et al. Orientation-dependent plastic deformation mechanisms and competition with stress-induced phase transformation in microscale NiTi. Acta Mater. 2021, 208, 116731.
- 31.
Li, Q.; Chen, Y.; Liu, Y.; et al. Non-linear temperature dependences of pseudoelastic stress and stress hysteresis of a nanocrystalline Ni47Ti50Fe3 alloy. Acta Mater. 2024, 265, 119625.
- 32.
Li, R.; Liaw, P.K.; Jiang, J.; et al. Advanced Applications for Smart-Metallic Materials. Smart Mater. Devices 2025, 1, 1.
- 33.
Wang, X.B.; Kustov, S.; Li, K.; et al. Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti50.8 at.% Ni alloy with micron-sized grains. Acta Mater. 2015, 82, 224–233.
- 34.
Lu, H.Z.; Liu, L.H.; Yang, C.; et al. Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting. J. Mater. Sci. Technol. 2022, 101, 205–216.
- 35.
Xu, B.; Wang, C.; Wang, Q.Y.; et al. Toward tunable shape memory effect of NiTi alloy by grain size engineering: A phase field study. J. Mater. Sci. Technol. 2024, 168, 276–289.
- 36.
Chaithany, K.N.; Pagare, A.; Brokmeier, H.G.; et al. Transformation textures in Ni rich NiTi shape memory alloy. Mater. Sci. Eng. A 2022, 835, 142594.
- 37.
Chumlyakov, Y.I.; Kireev, I.V.; Vyrodova, A.V.; et al. Effect of marforming on superelasticity and shape memory effect of [001]-oriented Ni50.3Ti49.7 alloy single crystals under compression. J. Alloys Compd. 2022, 896, 162841.
- 38.
Zu, X.; Wen, H.; Peng, Z.; et al. Enhanced Functional Fatigue Resistance of Cu-Al-Mn Superelastic Wire Bamboo-Like Grain Structure. Fatigue Fract. Eng. Mater. Struct. 2025, 48, 1248–1260.
- 39.
Sehitoglu, H.; Wu, Y.; Ertekin, E.; et al. Elastocaloric effects in the extreme. Scr. Mater. 2018, 148, 122–126.
- 40.
Sedmák, P.; Šittner, P.; Pilch, J.; et al. Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction. Acta Mater. 2015, 94, 257–270.
- 41.
Ryu, H.; Lee, Z.F.; Kim, J.Y.; et al. Cyclic stability in NiTi and NiTiCu thin films: Role of precipitates in low-and high-cycle regimes. Scr. Mater. 2024, 250, 116189.
- 42.
Chen, H.; Xiao, F.; Liang, X.; et al. Stable and large superelasticity and elastocaloric effect in nanocrystalline Ti-44Ni-5Cu-1Al (at%) alloy. Acta Mater. 2018, 158, 330–339.
- 43.
Battaglia, M.; Sellitto, A.; Giamundo, A.; et al. Advanced material thermomechanical modelling of shape memory alloys applied to automotive design. Shape Mem. Superelasticity 2024, 10, 297–313.
- 44.
Wu, Y.; Ertekin, E.; Sehitoglu, H.; et al. Elastocaloric cooling capacity of shape memory alloys—Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation. Acta Mater. 2017, 135, 158–176.
- 45.
Li, X.; Liang, Q.; Dong, T.; et al. Fatigue-resistant elastocaloric effect in hypoeutectic TiNi58 alloy with heterogeneous microstructure. Acta Mater. 2024, 262,119464.
- 46.
Tong, Y.X.; Shuitcev, A.; Zheng, Y.F.; et al. Development of TiNi-based shape memory slloys with high cycle stability and high transformation temperature. Adv. Eng. Mater. 2020, 22, 1900496.
- 47.
Cui, J.; Chu, Y.S.; Famodu, O.O.; et al. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 2006, 5, 286–290.
- 48.
Xue, D.Q.; Li, Z.H.; Pan, Y.; et al. Low hysteresis and high cyclic stability in a Ti50Ni45.2Cu1Fe3.8 shape memory alloy. J. Alloys Compd. 2023, 955, 170188.
- 49.
Kockar, B.; Karaman, I.; Kim, J.I.; et al. A method to enhance cyclic reversibility of NiTiHf high temperature shape memory alloys. Scr. Mater. 2006, 54, 2203–2208.
- 50.
Lua, H.Z.; Ma, H.W.; Cai, W.S.; et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting. Acta Mater. 2021, 219, 117261.
- 51.
Peng, C.; Liu, Y.F.; Min, N.; et al. Enhanced two-way shape memory effect in nanocrystalline NiTi shape memory alloy wires. Scr. Mater. 2023, 236, 115669.
- 52.
Ahadi, A.; Sun, Q. Stress-induced nanoscale phase transition in superelastic NiTi by in situ X-ray diffraction. Acta Mater. 2015, 90, 272–281.
- 53.
Li, Z.; Cai, J.; Zhao, Z.; et al. Local chemical inhomogeneity enables superior strength-ductility-superelasticity synergy in additively manufactured NiTi shape memory alloys. Nat. Commun. 2025, 16, 1941.
- 54.
Surikov, N.Y.; Panchenko, E.; Chumlyakov, Y.I.; et al. Cyclic stability of the elastocaloric effect in heterophase [001]-oriented TiNi single crystals. Appl. Phys. Lett. 2024, 125, 151901.
- 55.
Tobushi, H.; Iwanaga, H.; Tanaka, K.; et al. Deformation behaviour of TiNi shape memory alloy subjected to variable stress and temperature. Contin. Mech. Thermodyn. 1991, 3, 79–93.
- 56.
Dao, M.; Lu, L.; Asaro, R.J.; et al. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 2007, 55, 4041–4065.
- 57.
Tyc, O.; Iaparova, E.; Molnárová; O; et al. Stress induced martensitic transformation in NiTi at elevated temperatures: Martensite variant microstructures, recoverable strains and plastic strains. Acta Mater. 2024, 279, 120287.
- 58.
Toghani-Taheri, F.; Khodabakhshi, F.; Malekan, M.; et al. Cyclic pseudoelastic behavior of friction stir processed NiTi shape memory alloy: Microstructure and W-alloying. Mater. Sci. Eng. A 2025, 927,148000.
- 59.
Waitz, T.; Kazykhanov, V.; Karnthaler, H.P.; et al. Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 2003, 52, 137–147.
- 60.
Gall, K.; Maier, H.J. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater. 2002, 50, 4643–4657.
- 61.
He, Q.F.; Wang, J.G.; Chen, H.A.; et al. A highly distorted ultraelastic chemically complex Elinvar alloy. Nature 2022, 602, 251–257.
- 62.
Saito, T.; Furuta, T.; Hwang, J.H.; et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 2003, 300, 464–467.
- 63.
Jarząbek, D.M.; Włoczewski, M.; Milczarek, M.; et al. Deformation Mechanisms of (100) and (110) Single-Crystal BCC Gum Metal Studied by Nanoindentation and Micropillar Compression. Metall. Mater. Trans. A 2024, 55, 4954–4964.
- 64.
Sankaran, R.P.; Ozdol, V.B.; Ophus, C.; et al. Multiscale analysis of nanoindentation-induced defect structures in gum metal. Acta Mater. 2018, 151, 334–346.
- 65.
Yang, Y.; Xu, D.; Cao, S.; et al. Effect of strain rate and temperature on the deformation behavior in a Ti-23.1Nb-2.0Zr-1.0O titanium alloy. J. Mater. Sci. Technol. 2021, 73, 52–60.
- 66.
Yang, Y.; Zhang, B.; Meng, Z.; et al. {332}<113> Twinning transfer behavior and its effect on the twin shape in a beta-type Ti-23.1Nb-2.0Zr-1.0O alloy. J. Mater. Sci. Technol. 2021, 91, 58–66.
- 67.
da Silva, M.R.; Plaine, A.H.; Pinotti, V.E.; et al. A review of Gum Metal: Developments over the years and new perspectives. J. Mater. Res. 2023, 38, 96–111.
- 68.
Kanapaakala, G.; Subramani, V. A comprehensive review of Gum metal’s potential as a biomedical material. Proceedings of the Institution of Mechanical Engineers. Part L J. Mater. Des. Appl. 2024, 238, 1200–1225.
- 69.
Yuan, S.; Lin, N.; Zeng, Q.; et al. Recent advances in gum metal: Synthesis, performance and application. Crit. Rev. Solid State Mater. Sci. 2023, 48, 257–288.
- 70.
Tong, Y.X.; Gu, H.L.; James, R.D.; et al. Novel TiNiCuNb shape memory alloys with excellent thermal cycling stability. J. Alloys Compd. 2019, 782, 343–347.
- 71.
Gomez-Cort, J.F.; Czaja, P.; Szczerba, M.J.; et al. Extremely stable stress-induced martensitic transformation at the nanoscale during superelastic cycling of Ni51Mn28Ga21 shape memory alloy. Mater. Sci. Eng. A 2023, 881, 145339.
- 72.
Jaronie, M.J.; Martin, L.; Aleksandar, S.; et al. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2013, 56, 1078–1113.
- 73.
Guo, J.P.; Wei, Z.Y.; Shen, Y.; et al. Low-temperature superelasticity and elastocaloric effect in textured Ni–Mn–Ga–Cu shape memory alloys. Scr. Mater. 2020, 185, 56–60.
- 74.
Dunand, D.C.; Müllner, P. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys. Adv. Mater. 2011, 23, 216–232.
- 75.
Tian, Y.; Hu, B.; Dang, P.; et al. Noise-Aware Active Learning to Develop High-Temperature Shape Memory Alloys with Large Latent Heat. Adv. Sci. 2024, 11, 2406216.
- 76.
Checa, P.; Feuchtwanger, J.; Musiienko, D.; et al. High temperature Ni45Co5Mn25−xFexGa20Cu5 ferromagnetic shape memory alloys. Scr. Mater. 2017, 134, 119–122.
- 77.
Müllner, P. Magnetic Interactions of Disconnections and Fatigue of Ni-Mn-Ga. Acta Mater. 2025, 298, 121414.
- 78.
Li, X.; Wang, K.; Li, Y.; et al. Mechanical and Magnetic Properties of Porous Ni50Mn28Ga22 Shape Memory Alloy. Metals 2024, 14, 291.
- 79.
Ding, Z.Y.; Liu, D.X.; Qi, Q.L.; et al. Multistep superelasticity of Ni-Mn-Ga and Ni-Mn-Ga-Co-Cu microwires under stress-temperature coupling. Acta Mater. 2017, 140, 326–336.
- 80.
Zhang, X.X.; Witherspoon, C.; Müllner, P.; et al. Effect of pore architecture on magnetic-field-induced strain in polycrystalline Ni–Mn–Ga. Acta Mater. 2010, 59, 2229–2239.
- 81.
Wang, K.Y.; Hou, R.H.; Xuan, J.M.; et al. Shape memory effect and superelasticity of Ni50Mn30Ga20 porous alloy prepared by imitation casting method. Intermetallics 2022, 149, 1007668.
- 82.
Salaheldeen, M.; Zhukova, V.; Blanco, J.M.; et al. The impact of high-temperature annealing on magnetic properties, structure and martensitic transformation of Ni2MnGa-based glass-coated microwires. Ceram. Int. 2025, 51, 4378–4387.
- 83.
Zhang, J.X.; Ding, Z.Y.; Hou, R.H.; et al. Giant high temperature superelasticity in Ni53Mn24Ga21Co1Cu1 microwires. Intermetallics 2020, 122, 106799.
- 84.
Ueland, S.M.; Schuh, A.C. Superelasticity and fatigue in oligocrystalline shape memory alloy microwires. Acta Mater. 2012, 60, 282–292.
- 85.
Chen, Z.; Cong, D.; Ren, Y.; et al. Ferroelastic oligocrystalline microwire with unprecedented high-temperature superelastic and shape memory effects. NPG Asia Mater. 2022, 14, 17.
- 86.
Lee, W.J.; Weber, B.; Leinenbach, C.; et al. Recovery stress formation in a restrained Fe–Mn–Si-based shape memory alloy used for prestressing or mechanical joining. Constr. Build. Mater. 2015, 95, 600–610.
- 87.
Cassinerio, J.; Giordana, M.F.; Zelaya, E.; et al. On the impact of γ precipitates on the transformation temperatures in Fe–Ni–Co–Al–Ti–B shape memory alloy wires. Shape Mem. Superelasticity 2024, 10, 37–44.
- 88.
Lehnert, R.; Müller, M.; Vollmer, M.; et al. On the influence of crystallographic orientation on superelasticity—Fe-Mn-Al-Ni shape memory alloys studied by advanced in situ characterization techniques. Mater. Sci. Eng. A 2023, 871, 144830.
- 89.
Vollmer, M.; Arold, T.; Kriegel, M.J.; et al. Promoting abnormal grain growth in Fe-based shape memory alloys through compositional adjustments. Nat. Commun. 2019, 10, 2337.
- 90.
Felice, I.O.; Shen, J.J.; Barragan, A.; et al. Wire and arc additive manufacturing of Fe-based shape memory alloys: Microstructure, mechanical and functional behavior. Mater. Des. 2023, 231, 112004.
- 91.
Zhao, G.D.; Cui, Y.; Zhang, Y.; et al. Abnormal grain growth of FeMnAlNiCo shape memory alloys during directional recrystallisation. J. Mater. Res. Technol. 2023, 23, 819–829.
- 92.
Yuan, W.; Shi, F.; Zhang, C.; et al. Influence of cyclic degradation behaviors in shape memory alloy on the seismic performance of structures. J. Build. Eng. 2025, 111, 113461.
- 93.
Hamidreza, K.; Mahmoud, N.; Faezeh, K.J.; et al. The effect of high-pressure torsion on the microstructure and outstanding pseudoelasticity of a ternary Fe–Ni–Mn shape memory alloy. Mater. Sci. Eng. A 2021, 802, 140647.
- 94.
Ding, Z.; Lv, X.; Wang, D.; et al. Multi-step phase-transformation of Ni-Mn-Ga smart microwires under stress-and strain-controlled tensile modes. Smart Mater. Struct. 2025, 34, 065032.
- 95.
Hilscher, M.; Jübner, P.; Ghafoori, E. Iron-Based Shape Memory Alloys in Construction: A Review of Research, Applications, and Challenges. Shape Mem. Superelasticity 2025, 1–15. https://doi.org/10.1007/s40830-025-00560-x.
- 96.
Golrang, M.; Mohri, M.; Ghafoori, E.; et al. Tailoring functional properties of a FeMnSi shape memory alloy through thermo-mechanical processing. J. Mater. Res. Technol. 2024, 291, 1887–1900.
- 97.
Abuzaid, W.; Sehitoglu, H.Y. Superelasticity and functional fatigue of single crystalline FeNiCoAlTi iron-based shape memory alloy. Mater. Des. 2018, 160, 642–651.
- 98.
Deng, L.; Luo, J.; Li, R.; et al. Microstructural Evolution and Twinning Mechanism in Cold-Drawn CoNiV Medium-Entropy Alloy. Smart Mater. Devices 2025, 1, 2.
- 99.
Sozinov, A.; Lanska, N.; Soroka, A.; et al. 12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite. Appl. Phys. Lett. 2013, 102, 021902.
- 100.
Vronka, M.; Straka, L.; Klementová; M; et al. Unexpected modulation revealed by electron diffraction in Ni-Mn-Ga-Co-Cu tetragonal martensite exhibiting giant magnetic field-induced strain. Scr. Mater. 2024, 242, 115901.
- 101.
Petr, C.; Daria, D.; Kristian, M.; et al. Exceptionally small Young modulus in 10M martensite of Ni-Mn-Ga exhibiting magnetic shape memory effect. Acta Mater. 2023, 257, 119–133.
- 102.
Yu, Q.; Wang, J.; Liang, C.; et al. A Giant Magneto-Superelasticity of 5% Enabled by Introducing Ordered Dislocations in Ni34Co8Cu8Mn36Ga14 Single Crystal. Adv. Sci. 2024, 240, 1–9.
- 103.
Zhen, L.Z.; Zong, L.B.; Yun, L.Z.; et al. Enhanced elastocaloric effect and refrigeration properties in a Si-doped Ni-Mn-In shape memory alloy. J. Mater. Sci. Technol. 2022, 117, 167–173.
- 104.
Alexei, S.; Likhachev, A.A.; Ullakko, K.; et al. Magnetic and magnetomechanical properties of Ni-Mn-Ga alloys with easy axis and easy plane of magnetization. Smart Mater. Struct. 2001, 4333, 189–196.
- 105.
Qu, Y.; Cong, D.; Li, S.; et al. Simultaneously achieved large reversible elastocaloric and magnetocaloric effects and their coupling in a magnetic shape memory alloy. Acta Mater. 2018, 151, 41–55.
- 106.
Peng, C.T.; Zhen, Z.J.; Jia, X.; et al. Combining magnetocaloric and elastocaloric effects in a Ni45Co5Mn37In13 alloy. J. Mater. Sci. Technol. 2021, 94, 47–52.
- 107.
Shi, Z.J.; Ming, Q.F.; Jie, Z.R.; et al. Microstructure and magnetocaloric effect in nonequilibrium solidified Ni-Mn-Sn-Co alloy prepared by laser powder bed fusion. Addit. Manuf. 2024, 79, 103941.
- 108.
Wen, S.; Xiang, W.L.; Zhi, Y.; et al. Multicaloric effect in Ni-Mn-Sn metamagnetic shape memory alloys by laser powder bed fusion. Addit. Manuf. 2022, 59, 103125.
- 109.
Leinenbach, C.; Kramer, H.; Bernhard, C.; et al. Thermo-Mechanical Properties of an Fe-Mn-Si-Cr-Ni-VC Shape Memory Alloy with Low Transformation Temperature. Adv. Eng. Mater. 2012, 14, 62–67.
- 110.
Lee, J.W.; Weber, B.; Feltrin, G.; et al. Stress recovery behaviour of an Fe-Mn-Si-Cr-Ni-VC shape memory alloy used for prestressing. Smart Mater. Struct. 2013, 22, 125037.