2601002813
  • Open Access
  • Article

Corrosion Performance of Al0.1CoCrFeNi High Entropy Alloy in Liquid Lead-Bismuth Eutectic at Different Temperatures

  • Songqin Xia 1,*,   
  • Yimin Yang 2,   
  • Baoying Wang 1,   
  • Xuan Zuo 1

Received: 01 Dec 2025 | Revised: 09 Jan 2026 | Accepted: 12 Jan 2026 | Published: 22 Jan 2026

Abstract

To investigate the applicability of the Al0.1CoCrFeNi high entropy alloy (HEA) in liquid lead-bismuth eutectic (LBE) environments, this study systematically examined the tensile mechanical properties and corrosion behavior of the alloy at temperatures of 350℃, 450℃, and 550℃. The results showed a significant temperature dependence of the alloy’s mechanical properties and fracture mode: At 350℃ and 450℃, a protective oxide film dominated by Al2O3 and Cr2O3 forms on the alloy surface, endowing the alloy with high tensile strength (up to 1090 MPa at 350℃) and excellent ductility (with fracture strain of 10% at 350 ℃), ultimately resulting in ductile fracture. At 550 ℃, the oxide film undergoes slight damage, accompanied by mild dissolution corrosion. Accordingly, Al and Cr elements dissolve, which in turn triggers liquid metal embrittlement (LME), resulting in a reduction of the alloy's tensile strength to 410 MPa, a decrease in fracture strain to 5%, and the onset of brittle fracture. In addition, no obvious element segregation or massive element loss was observed in the alloy matrix at all test temperatures, indicating that the alloy possesses good chemical stability. This study provides an important reference for the application of the Al0.1CoCrFeNi HEA in LBE environments. 

References 

  • 1.

    Abram, T.; Ion, S. Generation-IV nuclear power: A review of the state of the science. Energy Policy 2008, 36, 4323–4330. https://doi.org/10.1016/j.enpol.2008.09.059.

  • 2.

    Concetta, F. Introduction. In Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Thermal-hydraulics and Technologies: 2015 Edition; Nuclear Energy Agency: Moulineaux, France, 2015. https://doi.org/org/10.1787/42dcd531-en.

  • 3.

    Lorusso, P.; Bassini, S.; Del Nevo, A.; et al. GEN-IV LFR development: Status & perspectives. Prog. Nucl. Energy 2018, 105, 318–331. https://doi.org/10.1016/j.pnucene.2018.02.005.

  • 4.

    Wang, W.; Yang, C.; You, Y.; Yin, H. A Review of Corrosion Behavior of Structural Steel in Liquid Lead–Bismuth Eutectic. Crystals 2023, 13, 968. https://doi.org/10.3390/cryst13060968.

  • 5.

    Gong, X.; Li, R.; Sun, M.; et al. Opportunities for the LWR ATF materials development program to contribute to the LBE-cooled ADS materials qualification program. J. Nucl. Mater. 2016, 482, 218–228. https://doi.org/10.1016/j.jnucmat.2016.10.012.

  • 6.

    Tsisar, V.; Schroer, C.; Wedemeyer, O.; et al. Long-term corrosion of austenitic steels in flowing LBE at 400 ℃ and 10−7 mass% dissolved oxygen in comparison with 450 and 550 ℃. J. Nucl. Mater. 2016, 468, 305–312. https://doi.org/10.1016/j.jnucmat.2015.09.027.

  • 7.

    Lambrinou, K.; Charalampopoulou, E.; Van der Donck, T.; et al. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 ℃. J. Nucl. Mater. 2017, 490, 9–27. https://doi.org/10.1016/j.jnucmat.2017.04.004.

  • 8.

    Lambrinou, K.; Koch, V.; Coen, G.; et al. Corrosion scales on various steels after exposure to liquid lead-bismuth eutectic. J. Nucl. Mater. 2013, 450, 244–255. https://doi.org/10.1016/j.jnucmat.2013.09.034.

  • 9.

    Hosemann, P.; Frazer, D.; Stergar, E.; et al. Twin boundary-accelerated ferritization of austenitic stainless steels in liquid lead–bismuth eutectic. Scr. Mater. 2016, 118, 37–40. https://doi.org/10.1016/j.scriptamat.2016.02.029.

  • 10.

    Tsisar, V.; Gavrilov, S.; Schroer, C.; et al. Long-term corrosion performance of T91 ferritic/martensitic steel at 400 ℃ in flowing Pb-Bi eutectic with 2 × 10−7mass% dissolved oxygen. Corros. Sci. 2020, 174, 108852. https://doi.org/10.1016/j.corsci.2020.108852.

  • 11.

    Balbaud, F.; Martinelli, L. Corrosion issues in lead-cooled fast reactor (LFR) and accelerator driven systems (ADS). In Nuclear Corrosion Science and Engineering; Woodhead Publishing Limited: Sawston, UK, 2012; pp. 807–841. https://doi.org/10.1533/9780857095343.6.807.

  • 12.

    Martinelli, L.; Balbaud-Célérier, F.; Terlain, A.; et al. Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part I). Corros. Sci. 2008, 50, 2523–2536. https://doi.org/10.1016/j.corsci.2008.06.050.

  • 13.

    Hojná, A.; Halodová, P.; Chocholoušek, M.; et al. Environmentally assisted cracking of T91 ferritic-martensitic steel in heavy liquid metals. Corros. Rev. 2020, 38, 183–194. https://doi.org/10.1515/corrrev-2019-0035.

  • 14.

    Gong, X.; Marmy, P.; Verlinden, B.; et al. Low cycle fatigue behavior of a modified 9Cr-1Mo ferritic-martensitic steel in lead–bismuth eutectic at 350 ℃—Effects of oxygen concentration in the liquid metal and strain rate. Corros. Sci. 2015, 94, 377–391. https://doi.org/10.1016/j.corsci.2015.02.022.

  • 15.

    Gong, X.; Chen, J.; Xiang, C.; et al. A comparative study on liquid metal embrittlement susceptibility of three FeCrAl ferritic alloys in contact with liquid lead-bismuth eutectic at 350 ℃. Corros. Sci. 2021, 183, 109346. https://doi.org/10.1016/j.corsci.2021.109346.

  • 16.

    Gong, X.; Chen, J.; Hu, F.; et al. Liquid metal embrittlement of an Fe10Cr4Al ferritic alloy exposed to oxygen-depleted and -saturated lead-bismuth eutectic at 350 ℃. Corros. Sci. 2020, 165, 108364. https://doi.org/10.1016/j.corsci.2019.108364.

  • 17.

    Zhang, J.; Li, N. Review of the studies on fundamental issues in LBE corrosion. J. Nucl. Mater. 2008, 373, 351–377. https://doi.org/10.1016/j.jnucmat.2007.06.019.

  • 18.

    Yao, C.; Wang, Z.; Zhang, H.; et al. HLMIF, a facility for investigating the synergistic effect of ion-irradiation and LBE corrosion. J. Nucl. Mater. 2019, 523, 260–267. https://doi.org/10.1016/j.jnucmat.2019.05.049.

  • 19.

    Stergar, E.; Eremin, S.G.; Gavrilov, S.; et al. Influence of LBE long term exposure and simultaneous fast neutron irradiation on the mechanical properties of T91 and 316L. J. Nucl. Mater. 2016, 473, 28–34. https://doi.org/10.10 16/j.jnucmat.2016.02.008.

  • 20.

    Yeh, J.W.; Chen, S.K.; Lin, S.J.; et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. https://doi.org/10.1002/adem.200300567.

  • 21.

    George, E.P.; Curtin, W.A.; Tasan, C.C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020, 188, 435–474. https://doi.org/10.1016/j.actamat.2019.12.015.

  • 22.

    Li, Z.; Zhao, S.; Ritchie, R.O.; et al. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. 2019, 102, 296–345. https://doi.org/10.1016/j.pmatsci.2018.12.003.

  • 23.

    Sathiyamoorthi, P.; Kim, H.S. High-entropy alloys with heterogeneous microstructure: Processing and mechanical properties. Prog. Mater. Sci. 2020, 123, 100709. https://doi.org/10.1016/j.pmatsci.2020.100709.

  • 24.

    Shi, Y.; Collins, L.; Feng, R.; et al. Homogenization of AlXCoCrFeNi high-entropy alloys with improved corrosion resistance. Corros. Sci. 2018, 133, 120–131. https://doi.org/10.1016/j.corsci.2018.01.030.

  • 25.

    Luo, H.; Lu, W.; Fang, X.; et al. Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy. Mater. Today 2018, 21, 1003–1009. https://doi.org/10.1016/j.mattod.2018.07.015.

  • 26.

    Zhao, Y.; Lee, D.-H.; Seok, M.-Y.; et al. Resistance of CoCrFeMnNi high-entropy alloy to gaseous hydrogen embrittlement. Scr. Mater. 2017, 135, 54–58. https://doi. org/ 10.1016/j.scriptamat.2017.03.029.

  • 27.

    Jin, K.; Lu, C.; Wang, L.M.; et al. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scr. Mater. 2016, 119, 65–70. https://doi.org/10.1016/j.scriptamat.2016.03.030.

  • 28.

    Yang, T.; Guo, W.; Poplawsky, J.D.; et al. Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation. Acta Mater. 2020, 188, 1–15. https://doi.org/10.1016/j.actamat.2020.01.060.

  • 29.

    Yang, T.; Xia, S.; Liu, S.; et al. Effects of AL addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy. Mater. Sci. Eng. A 2015, 648, 15–22. https://doi.org/10.1016/j.msea.2015.09.034.

  • 30.

    Rao, J.C.; Diao, H.Y.; Ocelík, V.; et al. Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal. Acta Mater. 2017, 131, 206–220. https://doi.org/10.1016/j.actamat.2017.03.066.

  • 31.

    Lu, J.; Chen, Y.; Zhang, H.; et al. Effect of Al content on the oxidation behavior of Y/Hf-doped AlCoCrFeNi high-entropy alloy. Corros. Sci. 2020, 170, 108691. https://doi.org/10.1016/j.corsci.2020.108691.

  • 32.

    Xing, G.; Haitao, C.; Feifei, Z.; et al. Degradation of tensile mechanical properties of two AlxCoCrFeNi (x = 0.3 and 0.4) high-entropy alloys exposed to liquid lead-bismuth eutectic at 350 and 500 ℃. J. Nucl. Mater. 2021, 558, 153364. https://doi.org/10.1016/j.jnucmat.2021.153364.

  • 33.

    Gorse, D.; Auger, T.; Vogt, J.B.; et al. Influence of liquid lead and lead–bismuth eutectic on tensile, fatigue and creep properties of ferritic/martensitic and austenitic steels for transmutation systems. J. Nucl. Mater. 2011, 415, 284–292. https://doi.org/10.1016/j.jnucmat.2011.04.047.

  • 34.

    Gao, Z.; Xue, L.; Peng, X.; et al. Enhanced compatibility of Al-modulated AlxNiCoFeCr high-entropy alloy and microstructure degradation under static oxygen-saturated lead bismuth eutectic. J. Alloys Compd. 2025, 1037, 182253. https://doi.org/ 10.1016/j.jallcom.2025.182253.

  • 35.

    Shahboub, A.; Chen, P.; Deng, C.; et al. Investigation of the anti-corrosion behavior of Fe-Cr oxide layer in LBE: A first-principles study. J. Nucl. Mater. 2025, 605, 155592. https://doi.org/10.1016/j.jnucmat.2024.155592.

  • 36.

    Gong, X.; Short, M.P.; Auger, T.; et al. Environmental degradation of structural materials in liquid lead- and lead-bismuth-eutectic-cooled reactors. Prog. Mater. Sci. 2022, 126, 100920. https://doi.org/10.1016/j.pmatsci.2022.100920.

Share this article:
How to Cite
Xia, S.; Yang, Y.; Wang, B.; Zuo, X. Corrosion Performance of Al0.1CoCrFeNi High Entropy Alloy in Liquid Lead-Bismuth Eutectic at Different Temperatures. Smart Materials and Devices 2026, 1 (1), 4.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.