2509001263
  • Open Access
  • Article

Characterising Next Generation Epitaxial Silicon Detectors for Microbeam Radiation Dosimetry

  • Andrew Dipuglia 1,   
  • Jeremy A. Davis 1, *,   
  • Jason Paino 1,   
  • Matthew J. Cameron 1,   
  • Marco Petasecca 1,   
  • Zeljko Pastuovic 2,   
  • Vladimir Perevertaylo 3,   
  • Anatoly B. Rosenfeld 1,   
  • Michael L.F. Lerch 1

Received: 11 Jun 2025 | Revised: 04 Aug 2025 | Accepted: 08 Sep 2025 | Published: 03 Dec 2025

Abstract

A next-generation p-type epitaxial single silicon strip detector, EPI37, has been developed by the Centre for Medical and Radiation Physics for dosimetry and quality assurance in synchrotron Microbeam Radiation Therapy. The sensitive volume of the dosimeter, as defined by a thin strip junction and surrounding guard ring, has dimensions of 5 × 37 × 200 µm3. Charge collection characteristics of the device were assessed using ion beam induced charge microscopy, to characterise the actual sensitive volume size and assess the expected operational behaviour. To test the suitability of the device for use in synchrotron Microbeam Radiation Therapy, the EPI37 was used to measure pertinent characteristics of a synchrotron microbeam radiation treatment field, such as the peak-to-valley dose ratio and the full-width half-maximum. The results were compared to those using the commercially available PTW microDiamond. The results demonstrate the feasibility of the EPI37 for use in microbeam radiation therapy dosimetry.

References 

  • 1.

    Uyama, A.; Kondoh, T.; Nariyama, N.; et al. A narrow microbeam is more effective for tumor growth suppression than a wide microbeam: An in vivo study using implanted human glioma cells. J. Synchrotron Radiat. 2011, 18, 671–678.

  • 2.

    Fernandez-Palomo, C.; Brauer-Krisch, E.; Laissue, J.; et al. Use of synchrotron medical microbeam irradiation to investigate radiation-induced bystander and abscopal effects in vivo. Phys. Medica 2015, 31, 584–595.

  • 3.

    Bronnimann, D.; Bouchet, A.; Schneider, C.; et al. Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage in vivo. Sci. Rep. 2016, 6, 33601.

  • 4.

    Engels, E.; Paino, J.R.; Vogel, S.E.; et al. Modulating synchrotron microbeam radiation therapy doses for preclinical brain cancer. Radiation 2023, 3, 183–202.

  • 5.

    Winter, J.; Galek, M.; Matejcek, C.; et al. Clinical microbeam radiation therapy with a compact source: Specifications of the line-focus X-ray tube. Phys. Imaging Radiat. Oncol. 2020, 14, 74–81.

  • 6.

    Petrich, C.; Winter, J.; Dimroth, A.; et al. The compact line-focus X-ray tube for microbeam radiation therapy―Focal spot characterisation and collimator design. Phys. Med. 2025, 129, 104861.

  • 7.

    Matejcek, C.; Winter, J.; Aulenbacher, K.; et al. A novel electron source for a compact X-ray tube for microbeam radiotherapy with very high dose rates. Phys. Med. 2023, 106, 102532.

  • 8.

    Bravin, A.; Olko, P.; Schültke, E.; et al. Syra3 cost action—Microbeam radiation therapy: Roots and prospects. Phys. Med. 2015, 31, 561–563.

  • 9.

    Grotzer, M.A.; Schultke, E.; Brauer-Krisch, E.; et al. Microbeam radiation therapy: Clinical perspectives. Phys. Med. 2015, 31, 564–567.

  • 10.

    Griffin, R.J.; Koonce, N.A.; Dings, R.P.M.; et al. Microbeam radiation therapy alters vascular architecture and tumor oxygenation and is enhanced by a galectin-1 targeted anti-angiogenic peptide. Radiat. Res. 2012. 177, 804–812.

  • 11.

    Engels, E.; Li, N.; Davis, J.; et al. Toward personalized synchrotron microbeam radiation therapy. Sci. Rep. 2000, 10, 8833.

  • 12.

    Accuracy Requirements and Uncertainties in Radiotherapy. Human Health Series. Vienna: International Atomic Energy Agency. 2016. Available online: https://www.iaea.org/publications/10668/accuracy-requirements-and-uncertainties-in-radiotherapy (accessed on 8 June 2025).

  • 13.

    Davis, J.A.; Engels, E.; Petasecca, M.; et al. X-tream protocol for in vitro microbeam radiation therapy at the Australian Synchrotron. J. Appl. Phys. 2021, 129, 244902.

  • 14.

    Paino, J.; Barnes, M.; Engels, E.; et al. Incorporating clinical imaging into the delivery of microbeam radiation therapy. Appl. Sci. 2021, 11, 9101.

  • 15.

    Petasecca, M.; Cullen, A.; Fuduli, I.; et al. X-tream: A novel dosimetry system for synchrotron microbeam radiation therapy. J. Instrum. 2012, 7, P07022.

  • 16.

    Br, E.; Serduc, R.; Siegbahn, E.; et al. Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue. Mutat. Res. 2010, 704, 160–166.

  • 17.

    Lillicrap, S.C. Physics aspects of quality control in radiotherapy (Report No. 81). Phys. Med. Biol. 2000, 45, 815.

  • 18.

    Bartzsch, S.; Lott, J.; Welsch, K.; et al. Micrometer-resolved film dosimetry using a microscope in microbeam radiation therapy. Med. Phys. 2015, 42, 4069–4079.

  • 19.

    Ocadiz, A.; Livingstone, J.; Donzelli, M.; et al. Film dosimetry studies for patient specific quality assurance in microbeam radiation therapy. Phys. Med. 2019, 65, 227–237.

  • 20.

    Dipuglia, A.; Cameron, M.; Davis, J.A.; et al. Validation of a Monte Carlo simulation for microbeam radiation therapy on the imaging and medical beamline at the Australian Synchrotron. Sci. Rep. 2019, 9, 17696.

  • 21.

    Livingstone, J.; Stevenson, A.W.; Butler, D.J.; et al. Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron X-ray fields. Med. Phys. 2016, 43, 4283.

  • 22.

    Davis, J.; Petasecca, M.; Cullen, A.; et al. X-tream dosimetry of synchrotron radiation with the PTW microDiamond. J. Instrum. 2019, 14, P10037.

  • 23.

    Lerch, M.L.F.; Dipuglia, A.; Cameron, M.; et al. New 3D Silicon detectors for dosimetry in Microbeam Radiation Therapy. J. Phys. Conf. Ser. 2017, 777, 012009.

  • 24.

    Fournier, P.; Cornelius, I.; Donzelli, M.; et al. X-tream quality assurance in synchrotron X-ray microbeam radiation therapy. J. Synchrotron Radiat. 2016, 23, 1180–1190.

  • 25.

    Fournier, P.; Cornelius, I.; Dipuglia, A.; et al. X-tream dosimetry of highly brilliant X-ray microbeams in the MRT hutch of the Australian Synchrotron. Radiat. Meas. 2017, 106, 405–411.

  • 26.

    Davis, J.A.; Paino, J.R.; Dipuglia, A.; et al. Characterisation and evaluation of a PNP strip detector for synchrotron microbeam radiation therapy. Biomed. Phys. Eng. Express 2018, 4, 044002.

  • 27.

    Davis, J.; Dipuglia, A.; Cameron, M.; et al. Evaluation of silicon strip detectors in transmission mode for online beam monitoring in microbeam radiation therapy at the Australian Synchrotron. J. Synchrotron Radiat. 2022, 29, 29–41.

  • 28.

    Duncan, M.; Donzelli, M.; Pellicioli, P.; et al. First experimental measurement of the effect of cardio-synchronous brain motion on the dose distribution during microbeam radiation therapy. Med. Phys. 2020, 47, 213–222.

  • 29.

    Rozenfeld, A. B. “Radiation Sensor and Dosimeter”. China Patent CN101730535B, authorized 2 June 2008. Rozenfeld, A.B. Radiation Detector and Dosimeter. U.S. Patent US8742357B2, 2014.

  • 30.

    Breese, M.B.H. A theory of ion beam induced charge collection. J. Appl. Phys. 1993, 74, 3789–3799.

  • 31.

    Pastuovic, Z.; Davis, J.; Tran, T.L.; et al. IBIC microscopy—The powerful tool for testing micron-sized sensitive volumes in segmented radiation detectors used in synchrotron microbeam radiation and hadron therapies. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2019, 458, 90—96.

  • 32.

    Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823.

Share this article:
How to Cite
Dipuglia, A.; Davis, J. A.; Paino, J.; Cameron, M. J.; Petasecca, M.; Pastuovic, Z.; Perevertaylo, V.; Rosenfeld, A. B.; Lerch, M. L. F. Characterising Next Generation Epitaxial Silicon Detectors for Microbeam Radiation Dosimetry. The Solid-State Sensors Journal 2026, 1 (1), 1.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.