- 1.
Power, G.; Moore, Z.; O’Connor, T. Measurement of pH, exudate composition and temperature in wound healing: A systematic review. J. Wound Care 2017, 26, 381–397.
- 2.
Kanazawa, T.; Kitamura, A.; Nakagami, G.; et al. Lower temperature at the wound edge detected by thermography predicts undermining development in pressure ulcers: A pilot study. Int. Wound J. 2016, 13, 454–460.
- 3.
Alsaaod, M.; Schaefer, A.L.; Büscher, W.; et al. The role of infrared thermography as a non-invasive tool for the detection of lameness in cattle. Sensors 2015, 15, 14513–14525.
- 4.
Childs, C.; Soltani, H. Abdominal cutaneous thermography and perfusion mapping after caesarean section: A scoping review. Int. J. Environ. Res. Public. Health 2020, 17, 8693.
- 5.
Monshipouri, M.; Aliahmad, B.; Ogrin, R.; et al. Thermal imaging potential and limitations to predict healing of venous leg ulcers. Sci. Rep. 2021, 11, 13239.
- 6.
Zhu, L.Y.; Guo, S.X.; Wu, P.; et al. Advances in the research of the relationship between wound temperature and wound healing. Zhonghua Shao Shang Za Zhi Zhonghua Shaoshang Zazhi Chin. J. Burns 2018, 34, 829–832.
- 7.
Schollemann, F.; Kunczik, J.; Dohmeier, H.; et al. Infection probability index: Implementation of an automated chronic wound infection marker. J. Clin. Med. 2022, 11, 169. https://doi.org/10.3390/jcm11010169.
- 8.
McKinney, W. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2nd ed.; O’Reilly: Springfield, MI, USA, 2017.
- 9.
Harris, C.R.; Millman, K.J.; van der Walt, S.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362.
- 10.
Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95.
- 11.
Virtanen, P.; Gommers, R.; Oliphant, T.E.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2.
- 12.
Li, F.; Wang, M.; Wang, T.; et al. Smartphonebased infrared thermography to assess progress in thoracic surgical incision healing: A preliminary study. Int. Wound J. 2023, 20, 2000–2009. https://doi.org/10.1111/iwj.14063.
- 13.
Ramirez, J.; Bartlett, R.; Arriaga, J.; et al. Infrared thermography in wound care, surgery, and sports medicine: A review. Front. Physiol. 2022, 13, 838528. https://doi.org/10.3389/fphys.2022.838528.
- 14.
Machado, S.; Rodríguez, A.; Guerrero, J.; et al. Termografía infrarroja de alta resolución para monitoreo de catéteres venosos centrales en una unidad de cuidados intensivos pediátricos en Uruguay. Arch. Pediatría Urug. 2025, 96, e301. https://doi.org/10.31134/ap.96.5.
- 15.
Fridberg, M.; Rahbek, O.; Husum, H.-C.; et al. Can pin-site inflammation be detected with thermographic imaging? A cross-sectional study from the USA and Denmark of patients treated with external fixators. Acta Orthop. 2024, 95, 562–569. https://doi.org/10.2340/17453674.2024.41901.
- 16.
Fridberg, M. Postoperative Infection Monitoring Using Thermography; Aalborg University Open Publishing: Aalborg Øst, Denmark, 2025; 140p.
- 17.
Childs, C.; Wright, N.; Willmott, J.; et al. The surgical wound in infrared: Thermographic profiles and early stage test-accuracy to predict surgical site infection in obese women during the first 30 days after caesarean section. Antimicrob. Resist. Infect. Control 2019, 8, 1–15. https://doi.org/10.1186/s13756-018-0461-7.
- 18.
Burke-Smith, A.; Collier, J.; Jones, I. A comparison of non-invasive imaging modalities: Infrared thermography, spectrophotometric intracutaneous analysis and laser Doppler imaging for the assessment of adult burns. Burns 2015, 41, 1695–1707. https://doi.org/10.1016/j.burns.2015.06.023.
- 19.
Mercer, J.B.; Nielsen, S.P.; Hoffmann, G. Improvement of wound healing by water-filtered infrared-A (wIRA) in patients with chronic venous stasis ulcers of the lower legs including evaluation using infrared thermography. Ger. Med. Sci. 2008, 6, Doc11.
- 20.
Machado, S.; Tortorella, M.; Medeiros, C.; et al. Uso da imagem infravermelha em caso de envenenamento de uma criança picada por Bothrops Pubescens (Cope, 1870) no Uruguay. Pan Am. J. Med. Thermol. 2023, 10, e2023005. https://doi.org/10.18073/pajmt.2023.10.005.
- 21.
Dang, J.; Lin, M.; Tan, C.; et al. Use of infrared thermography for assessment of burn depth and healing potential: A systematic review. J. Burn. Care Res. 2021, 42, 1120–1127. https://doi.org/10.1093/jbcr/irab108.
- 22.
Carriere, M.E.; Haas, L.E.M.; Pijpe, A.; et al. Validity of thermography for measuring burn wound healing potential. Wound Repair. Regen. 2020, 28, 347–354. https://doi.org/10.1111/wrr.12786.
- 23.
Singer, A.J.; Relan, P.; Beto, L.; et al. Infrared thermal imaging has the potential to reduce unnecessary surgery and delays to necessary surgery in burn patients. J. Burn. Care Res. 2016, 37, 350–355. https://doi.org/10.1097/BCR.0000000000000330.
- 24.
Martínez-Jimenez, M.A.; Ramirez-GarciaLuna, J.L.; Kolosovas-Machuca, E.S.; et al. Development and validation of an algorithm to predict the treatment modality of burn wounds using thermographic scans: Prospective cohort study. PLoS ONE 2018, 13, e0206477.
- 25.
Bharara, M.; Schoess, J.; Nouvong, A.; et al. Wound inflammatory index: A “proof of concept” study to assess wound healing trajectory. J. Diabetes Sci. Technol. 2010, 4, 773–779. https://doi.org/10.1177/193229681000400402.
- 26.
Senneville, E.; Lipsky, B.A.; Abbas, Z.G.; et al. Diagnosis of infection in the foot in diabetes: A systematic review. Diabetes Metab. Res. Rev. 2020, 36, 32176440. https://doi.org/10.1002/dmrr.3281.
- 27.
Derwin, R.; Patton, D.; Avsar, P.; et al. The impact of topical agents and dressing on pH and temperature on wound healing: A systematic, narrative review. Int. Wound J. 2022, 19, 1397–1408. https://doi.org/10.1111/iwj.13733.
- 28.
Gatt, A.; Falzon, O.; Cassar, K.; et al. The application of medical thermography to discriminate neuroischemic toe ulceration in the diabetic foot. Int. J. Low. Extremi Wounds 2018, 17, 102–105. https://doi.org/10.1177/1534734618783910.