- 1.
Vicente-Serrano, S.M.; Quiring, S.M.; Peña-Gallardo, M.; et al. A review of environmental droughts: Increased risk under global warming? Earth-Sci. Rev. 2020, 201, 102953. https://doi.org/10.1016/j.earscirev.2019.102953.
- 2.
Vogt, J.; Erian, W.; Pulwarty, R.; et al. GAR Special Report on Drought 2021 (United Nations); United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2021.
- 3.
AghaKouchak, A.A baseline probabilistic drought forecasting framework using standardized soil moisture index: Application to the 2012 United States drought. Hydrol. Earth Syst. Sci. 2014, 18, 2485–2492. https://doi.org/10.5194/hess-18-2485-2014.
- 4.
Padrón, R.S.; Gudmundsson, L.; Decharme, B.; et al. Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci. 2020, 13, 477–481. https://doi.org/10.1038/s41561-020-0594-1.
- 5.
Barker, L.J.; Hannaford, J.; Parry, S.; et al. Historic hydrological droughts 1891–2015: Systematic characterisation for a diverse set of catchments across the UK. Hydrol. Earth Syst. Sci. 2019, 23, 4583–4602. https://doi.org/10.5194/hess-23-4583-2019.
- 6.
Lorenzo-Lacruz, J.; Vicente-Serrano, S.M.; González-Hidalgo, J.C.; et al. Hydrological drought response to meteorological drought in the Iberian Peninsula. Clim. Res. 2013, 58, 117–131. https://doi.org/10.3354/cr01177.
- 7.
Heim, R.R. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. https://doi.org/10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2.
- 8.
Palmer, W.C.; Meteorological drought. Weather Bureau Res. Paper 1965, 45, 1–58.
- 9.
Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. https://doi.org/10.1175/2009JCLI2909.1.
- 10.
Vicente-Serrano, S.M.; Domínguez-Castro, F.; Beguería, S.; et al. Atmospheric drought indices in future projections. Nat. Water 2025, 3, 374–387. https://doi.org/10.1038/s44221-025-00416-9.
- 11.
Domínguez-Castro, F.; Vicente-Serrano, S.M.; Tomás-Burguera, M.; et al. High-spatial-resolution probability maps of drought duration and magnitude across Spain. Nat. Hazards Earth Syst. Sci. 2019, 19, 611–628. https://doi.org/10.5194/nhess-19-611-2019.
- 12.
González, J.; Valdés, J.B. The mean frequency of recurrence of in-time-multidimensional events for drought analyses. Nat. Hazards Earth Syst. Sci. 2004, 4, 17–28. https://doi.org/10.5194/nhess-4-17-2004.
- 13.
Onyutha, C. On Rigorous Drought Assessment Using Daily Time Scale: Non-Stationary Frequency Analyses, Revisited Concepts, and a New Method to Yield Non-Parametric Indices. Hydrology 2017, 4. https://doi.org/10.3390/hydrology4040048.
- 14.
Vicente-Serrano, S.M.; Peña-Angulo, D.; Beguería, S.; et al. Global drought trends and future projections. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2022, 380, 20210285. https://doi.org/10.1098/rsta.2021.0285.
- 15.
Anderegg, W.R.L.; Kane, J.M.; Anderegg, L.D.L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 2013, 3, 30–36. https://doi.org/10.1038/nclimate1635.
- 16.
Kim, W.; Iizumi, T.; Nishimori, M. Global Patterns of Crop Production Losses Associated with Droughts from 1983 to 2009. J. Appl. Meteorol. Climatol. 2019, 58, 1233–1244. https://doi.org/10.1175/JAMC-D-18-0174.1.
- 17.
Gincheva, A.; Pausas, J.G.; Torres-Vázquez, M.Á.; et al. The Interannual Variability of Global Burned Area Is Mostly Explained by Climatic Drivers. Earth’s Future 2024, 12, e2023EF004334. https://doi.org/10.1029/2023EF004334.
- 18.
Iglesias, E.; Garrido, A.; Gómez-Ramos, A. Evaluation of drought management in irrigated areas. Agric. Econ. 2003, 29, 211–229. https://doi.org/10.1016/S0169-5150(03)00084-7.
- 19.
Lopez-Nicolas, A.; Pulido-Velazquez, M.; Macian-Sorribes, H. Economic risk assessment of drought impacts on irrigated agriculture. J. Hydrol. 2017, 550, 580–589. https://doi.org/10.1016/J.JHYDROL.2017.05.004.
- 20.
Martínez-Ibarra, E. Climate, water and tourism: Causes and effects of droughts associated with urban development and tourism in Benidorm (Spain). Int. J. Biometeorol. 2015, 59, 487–501. https://doi.org/10.1007/s00484-014-0851-3.
- 21.
Christian, J.I.; Basara, J.B.; Hunt, E.D.; et al. Flash drought development and cascading impacts associated with the 2010 Russian heatwave. Environ. Res. Lett. 2020, 15, 094078. https://doi.org/10.1088/1748-9326/AB9FAF.
- 22.
Caloiero, T.; Coscarelli, R. Analysis of the Characteristics of Dry and Wet Spells in a Mediterranean Region. Environ. Process. 2020, 7, 691–701. https://doi.org/10.1007/s40710-020-00454-3.
- 23.
el Hafyani, M.; Khalid, E. Literature Review on Stochastic Modeling of Wet and Dry Spells. J. Environ. Earth Sci. 2024, 6, 241–260. https://doi.org/10.30564/jees.v6i3.6964.
- 24.
Ferijal, T.; Mechram, S.; Fauzi, A. Spatial and temporal analysis of dry spell variability in Aceh, Indonesia: Implications for drought mitigation and agricultural planning. IOP Conf. Ser. Earth Environ. Sci. 2025, 1476, 012009. https://doi.org/10.1088/1755-1315/1476/1/012009.
- 25.
Martin-Vide, J.; Gomez, L. Regionalization of Peninsular Spain based on the length of dry spells. Int. J. Climatol. 1999, 19, 537–555. https://doi.org/10.1002/(SICI)1097-0088(199904)19:5<537::AID-JOC371>3.0.CO;2-X.
- 26.
Sirangelo, B.; Caloiero, T.; Coscarelli, R.; et al. A Stochastic Approach for the Analysis of Long Dry Spells with Different Threshold Values in Southern Italy. Water 2019, 11, 2026. https://doi.org/10.3390/w11102026.
- 27.
Breinl, K.; Di Baldassarre, G.; Mazzoleni, M.; et al. Extreme dry and wet spells face changes in their duration and timing. Environ. Res. Lett. 2020, 15, 074040. https://doi.org/10.1088/1748-9326/ab7d05.
- 28.
Manning, C.; Widmann, M.; Bevacqua, E.; et al. Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013). Environ. Res. Lett. 2019, 14, 094006. https://doi.org/10.1088/1748-9326/ab23bf.
- 29.
Raymond, F.; Drobinski, P.; Ullmann, A.; et al. Extreme dry spells over the Mediterranean Basin during the wet season: Assessment of HyMeX/Med-CORDEX regional climate simulations (1979–2009). Int. J. Climatol. 2018, 38, 3090–3105. https://doi.org/10.1002/joc.5487.
- 30.
Rivoire, P.; Tramblay, Y.; Neppel, L.; et al. Impact of the dry-day definition on Mediterranean extreme dry-spell analysis. Nat. Hazards Earth Syst. Sci. 2019, 19, 1629–1638. https://doi.org/10.5194/nhess-19-1629-2019.
- 31.
Beguería, S.; Vicente-Serrano, S.M.; López-Moreno, J.I.; et al. Annual and seasonal mapping of peak intensity, magnitude and duration of extreme precipitation events across a climatic gradient, northeast Spain. Int. J. Climatol. 2009, 29, 1759–1779. https://doi.org/10.1002/joc.1808.
- 32.
Catalini, C.G.; Guillen, N.F.; Bazzano, F.M.; et al. Web Mapping of Extreme Daily Rainfall Data in Central and Northern Argentina. J. Hydrol. Eng. 2021, 26, 05021013. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002077.
- 33.
Formetta, G.; Dallan, E.; Borga, M.; et al. Sub-daily precipitation returns levels in ungauged locations: Added value of combining observations with convection permitting simulations. Adv. Water Resour. 2024, 194, 104851. https://doi.org/10.1016/j.advwatres.2024.104851.
- 34.
Iliopoulou, T.; Koutsoyiannis, D.; Malamos, N.; et al. A stochastic framework for rainfall intensity–time scale–return period relationships. Part ΙΙ: Point modelling and regionalization over Greece. Hydrol. Sci. J. 2024, 69, 1092–1112. https://doi.org/10.1080/02626667.2024.2345814.
- 35.
Cindrić Kalin, K.; Pasarić, Z. Regional patterns of dry spell durations in Croatia. Int. J. Climatol. 2022, 42, 5503–5519. https://doi.org/10.1002/joc.7545.
- 36.
Sarhadi, A.; Heydarizadeh, M. Regional frequency analysis and spatial pattern characterization of Dry Spells in Iran. Int. J. Climatol. 2014, 34, 835–848. https://doi.org/10.1002/joc.3726.
- 37.
González-Hidalgo, J.C.; Vicente-Serrano, S.M.; Peña-Angulo, D.; et al. High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula). Acta Geophys. 2018, 66, 381–392. https://doi.org/10.1007/s11600-018-0138-x.
- 38.
Trullenque-Blanco, V.; Beguería, S.; Vicente-Serrano, S.M.; et al. Catalogue of drought events in peninsular Spanish along 1916–2020 period. Sci. Data 2024, 11, 703. https://doi.org/10.1038/s41597-024-03484-w.
- 39.
Camarero, J.J.; Gazol, A.; Sangüesa-Barreda, G.; et al. Forest growth responses to drought at short- and long-term scales in Spain: Squeezing the stress memory from tree rings. Front. Ecol. Evol. 2018, 6, 9. https://doi.org/10.3389/fevo.2018.00009.
- 40.
Iglesias, A.; Rosenzweig, C.; Pereira, D. Agricultural impacts of climate change in Spain: Developing tools for a spatial analysis. Glob. Environ. Chang. 2000, 10, 69–80. https://doi.org/10.1016/S0959-3780(00)00010-8.
- 41.
Peña-Gallardo, M.; Martín Vicente-Serrano, S.; Domínguez-Castro, F.; et al. The impact of drought on the productivity of two rainfed crops in Spain. Nat. Hazards Earth Syst. Sci. 2019, 19, 1215–1234. https://doi.org/10.5194/nhess-19-1215-2019.
- 42.
Vicente-Serrano, S.M.; Peña-Angulo, D.; Murphy, C.; et al. The complex multi-sectoral impacts of drought: Evidence from a mountainous basin in the Central Spanish Pyrenees. Sci. Total Environ. 2021, 769, 144702. https://doi.org/10.1016/j.scitotenv.2020.144702.
- 43.
Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; et al. A complete daily precipitation database for northeast Spain: Reconstruction, quality control, and homogeneity. Int. J. Climatol. 2010, 30, 1146–1163. https://doi.org/10.1002/joc.1850.
- 44.
Beguería, S.; Tomas-Burguera, M.; Serrano-Notivoli, R.; et al. Gap filling of monthly temperature data and its effect on climatic variability and trends. J. Clim. 2019, 32, 7797–7821. https://doi.org/10.1175/JCLI-D-19-0244.1.
- 45.
Beguería, S.; Tomas-Burguera, M.; Serrano-Notivoli, R.; et al. Evolution of extreme precipitation in Spain: Contribution of atmospheric dynamics and long-term trends. Stoch. Environ. Res. Risk Assess. 2025, 39, 2137–2157. https://doi.org/10.1007/s00477-025-02961-x.
- 46.
Vicente-Serrano, S.M.; Beguería-Portugués, S. Estimating extreme dry-spell risk in the middle Ebro valley (northeastern Spain): A comparative analysis of partial duration series with a general Pareto distribution and annual maxima series with a Gumbel distribution. Int. J. Climatol. 2003, 23, 1103–1118. https://doi.org/10.1002/joc.934.
- 47.
Lana, X.; Burgueño, A. Probabilities of Repeated Long Dry Episodes Based on the Poisson Distribution. An example for Catalonia (NE Spain). Theor. Appl. Climatol. 1998, 60, 111–120. https://doi.org/10.1007/s007040050037.
- 48.
Davy, L. Une nouvelle approache de la Sécheresse dans le basin de l’Ebre étude des épisodes secs. Revue Géographique de l’Est 1975, 1–2, 153–167.
- 49.
Racsko, P.; Szeidl, L.; Semenov, M. A serial approach to local stochastic weather models. Ecol. Model. 1991, 57, 27–41. https://doi.org/10.1016/0304-3800(91)90053-4.
- 50.
Douguedroit, A. The variations of dry spells in marseilles from 1865 to 1984. Journal of Climatology 1987, 7, 541–551. https://doi.org/10.1002/joc.3370070603.
- 51.
Nobilis, F. Dry spells in the Alpine country Austria. J. Hydrol. 1986, 88, 235–251. https://doi.org/10.1016/0022-1694(86)90093-4.
- 52.
Hershfield, D.M. on the probability of extreme rainfall events. Bull. Am. Meteorol. Soc. 1973, 54, 1013–1018. https://doi.org/10.1175/1520-0477(1973)054<1013:OTPOER>2.0.CO;2.
- 53.
Caeiro, F.; Gomes, M. Threshold Selection in Extreme Value Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014.
- 54.
Pickands, J., III. Statistical Inference Using Extreme Order Statistics. Ann. Stat. 1975, 3, 119–131. https://doi.org/10.1214/aos/1176343003.
- 55.
She, D.; Xia, J.; Song, J.; et al. Spatio-temporal variation and statistical characteristic of extreme dry spell in Yellow River Basin, China. Theor. Appl. Climatol. 2013, 112, 201–213. https://doi.org/10.1007/s00704-012-0731-x.
- 56.
Hosking, J.R.M.; Wallis, J.R. Parameter and Quantile Estimation for the Generalized Pareto Distribution. Technometrics 1987, 29, 339–349. https://doi.org/10.1080/00401706.1987.10488243.
- 57.
Miniussi, A.; Marra, F. Estimation of extreme daily precipitation return levels at-site and in ungauged locations using the simplified MEV approach. J. Hydrol. 2021, 603, 126946. https://doi.org/10.1016/j.jhydrol.2021.126946.
- 58.
Zou, W.; Yin, S.; Wang, W. Spatial interpolation of the extreme hourly precipitation at different return levels in the Haihe River basin. J. Hydrol. 2021, 598, 126273. https://doi.org/10.1016/j.jhydrol.2021.126273.
- 59.
Das, S.; Zhu, D.; Yin, Y. Comparison of mapping approaches for estimating extreme precipitation of any return period at ungauged locations. Stoch. Environ. Res. Risk Assess. 2020, 34, 1175–1196. https://doi.org/10.1007/s00477-020-01828-7.
- 60.
Yin, S.; Wang, Z.; Zhu, Z.; et al. Using Kriging with a heterogeneous measurement error to improve the accuracy of extreme precipitation return level estimation. J. Hydrol. 2018, 562, 518–529. https://doi.org/10.1016/j.jhydrol.2018.04.064.
- 61.
Beguería, S.; Vicente-Serrano, S.M. Mapping the hazard of extreme rainfall by peaks over threshold extreme value analysis and spatial regression techniques. J. Appl. Meteorol. Climatol. 2006, 45, 108–124. https://doi.org/10.1175/JAM2324.1.
- 62.
Burrough, P.A.; McDonnell, R.A. Principle of Geographic Information Systems. Oxford University Press: New York, NY, USA, 1998. Available online: https://www.researchgate.net/publication/37419765 (accessed on 29 September 2025).
- 63.
Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. https://doi.org/10.1002/joc.2419.
- 64.
Tegegn, M.G.; Berlie, A.B.; Utallo, A.U. Patterns and probabilities of dry spells and rainfall for improved rain-fed farming in Northwestern Ethiopia. Discov. Sustain. 2024, 5, 387. https://doi.org/10.1007/s43621-024-00576-w.
- 65.
Pérez-Sánchez, J.; Senent-Aparicio, J. Analysis of meteorological droughts and dry spells in semiarid regions: A comparative analysis of probability distribution functions in the Segura Basin (SE Spain). Theor. Appl. Climatol. 2018, 133, 1061–1074. https://doi.org/10.1007/s00704-017-2239-x.
- 66.
Anagnostopoulou, C.; Maheras, P.; Karacostas, T.; et al. Spatial and temporal analysis of dry spells in Greece. Theor. Appl. Climatol. 2003, 74, 77–91. https://doi.org/10.1007/s00704-002-0713-5.
- 67.
Serra, C.; Martínez, M.D.; Lana, X.; et al. European dry spell length distributions, years 1951–2000. Theor. Appl. Climatol. 2013, 114, 531–551. https://doi.org/10.1007/s00704-013-0857-5.
- 68.
Vargas, W.M.; Naumann, G.; Minetti, J.L. Dry spells in the River Plata Basin: An approximation of the diagnosis of droughts using daily data. Theor. Appl. Climatol. 2011, 104, 159–173. https://doi.org/10.1007/s00704-010-0335-2.
- 69.
Avilés, A.; Célleri, R.; Solera, A.; et al. Probabilistic Forecasting of Drought Events Using Markov Chain- and Bayesian Network-Based Models: A Case Study of an Andean Regulated River Basin. Water 2016, 8, 37. https://doi.org/10.3390/w8020037.
- 70.
López-Franca, N.; Sánchez, E.; Losada, T.; et al. Markovian characteristics of dry spells over the Iberian Peninsula under present and future conditions using ESCENA ensemble of regional climate models. Clim. Dyn. 2015, 45, 661–677. https://doi.org/10.1007/s00382-014-2280-8.
- 71.
Perzyna, G. Spatial and temporal characteristics of maximum dry spells in Southern Norway. Int. J. Climatol. 1994, 14, 895–909. https://doi.org/10.1002/joc.3370140806.
- 72.
Martin-Vide, J.; Olcina-Cantos, J. Climas y tiempos de España, Alianza Editorial; Alianza: Madrid, Spain, 2001; p. 43.
- 73.
Hempelmann, N.; Ehbrecht, C.; Alvarez-Castro, C.; et al. Web processing service for climate impact and extreme weather event analyses. Flyingpigeon (Version 1.0). Comput. Geosci. 2018, 110, 65–72. https://doi.org/10.1016/j.cageo.2017.10.004.
- 74.
Street, R.B. Towards a leading role on climate services in Europe: A research and innovation roadmap. Clim. Serv. 2016, 1, 2–5. https://doi.org/10.1016/j.cliser.2015.12.001.