2509001429
  • Open Access
  • Article

Spatial Assessment of Dry-Spell Hazards in Spain: Toward an Operational Climate Service

  • Amar Halifa-Marin 1, 2, *,   
  • S. Beguería 2, 3,   
  • F. Reig 1, 2,   
  • A. Royo-Aranda 1, 2,   
  • M. Arretxea 4,   
  • M. Gil-Guallar 2, 3,   
  • B. Latorre 2, 3,   
  • A. El Kenawy 1, 2,   
  • M. Franquesa 1, 2,   
  • M. Adell-Michavila 1, 2,   
  • A. Crespillo 1, 2,   
  • D. Pérez-Pajuelo 1, 2,   
  • F. Domínguez-Castro 1, 2,   
  • J. M. Gutiérrez 5,   
  • C. Azorin-Molina 6,   
  • L. Gimeno 7, 8, 9,   
  • R. Nieto 7, 8, 9,   
  • S. M. Vicente-Serrano 1, 2

Received: 16 Jun 2025 | Revised: 09 Sep 2025 | Accepted: 25 Sep 2025 | Published: 09 Oct 2025

Abstract

This study introduces the first high-resolution hazard probability maps for prolonged dry spells across Spain, marking a significant advancement toward a national climate service for drought extremes. Using long-term daily precipitation records from a dense network of meteorological stations and incorporating high-resolution topographic data, the methodology combines the fit of the dry spell series with a Generalized Pareto Distribution with universal kriging to spatially interpolate distribution parameters. The resulting maps provide robust and spatially continuous estimates of the likelihood and return periods of extreme dry spell durations, with strong validation against empirical station-based data. Our results reveal distinct spatial patterns in dry spell occurrence across Spain, with marked north-south gradients, highlighting the prevalence and severity of extended dry spells in southern and southeastern regions. Beyond the scientific contribution, the study delivers a fully operational, interactive online platform “https://rachas-secas.csic.es/ (accessed on 29 September 2025)” that allows end users to query localized drought hazards probabilities and return levels, supporting informed decision-making in sectors such as agriculture, water resource management, and ecosystem conservation. The flexible design of our employed methodological approach also offers potential for adaptation and replication in other regions globally, especially where dry spells pose significant socio-economic and environmental risks.

References 

  • 1.
    Vicente-Serrano, S.M.; Quiring, S.M.; Peña-Gallardo, M.; et al. A review of environmental droughts: Increased risk under global warming? Earth-Sci. Rev. 2020, 201, 102953. https://doi.org/10.1016/j.earscirev.2019.102953.
  • 2.
    Vogt, J.; Erian, W.; Pulwarty, R.; et al. GAR Special Report on Drought 2021 (United Nations); United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2021.
  • 3.
    AghaKouchak, A.A baseline probabilistic drought forecasting framework using standardized soil moisture index: Application to the 2012 United States drought. Hydrol. Earth Syst. Sci. 2014, 18, 2485–2492. https://doi.org/10.5194/hess-18-2485-2014.
  • 4.
    Padrón, R.S.; Gudmundsson, L.; Decharme, B.; et al. Observed changes in dry-season water availability attributed to human-induced climate change. Nat. Geosci. 2020, 13, 477–481. https://doi.org/10.1038/s41561-020-0594-1.
  • 5.
    Barker, L.J.; Hannaford, J.; Parry, S.; et al. Historic hydrological droughts 1891–2015: Systematic characterisation for a diverse set of catchments across the UK. Hydrol. Earth Syst. Sci. 2019, 23, 4583–4602. https://doi.org/10.5194/hess-23-4583-2019.
  • 6.
    Lorenzo-Lacruz, J.; Vicente-Serrano, S.M.; González-Hidalgo, J.C.; et al. Hydrological drought response to meteorological drought in the Iberian Peninsula. Clim. Res. 2013, 58, 117–131. https://doi.org/10.3354/cr01177.
  • 7.
    Heim, R.R. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1165. https://doi.org/10.1175/1520-0477(2002)083<1149:AROTDI>2.3.CO;2.
  • 8.
    Palmer, W.C.; Meteorological drought. Weather Bureau Res. Paper 1965, 45, 1–58.
  • 9.
    Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. https://doi.org/10.1175/2009JCLI2909.1.
  • 10.
    Vicente-Serrano, S.M.; Domínguez-Castro, F.; Beguería, S.; et al. Atmospheric drought indices in future projections. Nat. Water 2025, 3, 374–387. https://doi.org/10.1038/s44221-025-00416-9.
  • 11.
    Domínguez-Castro, F.; Vicente-Serrano, S.M.; Tomás-Burguera, M.; et al. High-spatial-resolution probability maps of drought duration and magnitude across Spain. Nat. Hazards Earth Syst. Sci. 2019, 19, 611–628. https://doi.org/10.5194/nhess-19-611-2019.
  • 12.
    González, J.; Valdés, J.B. The mean frequency of recurrence of in-time-multidimensional events for drought analyses. Nat. Hazards Earth Syst. Sci. 2004, 4, 17–28. https://doi.org/10.5194/nhess-4-17-2004.
  • 13.
    Onyutha, C. On Rigorous Drought Assessment Using Daily Time Scale: Non-Stationary Frequency Analyses, Revisited Concepts, and a New Method to Yield Non-Parametric Indices. Hydrology 2017, 4. https://doi.org/10.3390/hydrology4040048.
  • 14.
    Vicente-Serrano, S.M.; Peña-Angulo, D.; Beguería, S.; et al. Global drought trends and future projections. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2022, 380, 20210285. https://doi.org/10.1098/rsta.2021.0285.
  • 15.
    Anderegg, W.R.L.; Kane, J.M.; Anderegg, L.D.L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 2013, 3, 30–36. https://doi.org/10.1038/nclimate1635.
  • 16.
    Kim, W.; Iizumi, T.; Nishimori, M. Global Patterns of Crop Production Losses Associated with Droughts from 1983 to 2009. J. Appl. Meteorol. Climatol. 2019, 58, 1233–1244. https://doi.org/10.1175/JAMC-D-18-0174.1.
  • 17.
    Gincheva, A.; Pausas, J.G.; Torres-Vázquez, M.Á.; et al. The Interannual Variability of Global Burned Area Is Mostly Explained by Climatic Drivers. Earth’s Future 2024, 12, e2023EF004334. https://doi.org/10.1029/2023EF004334.
  • 18.
    Iglesias, E.; Garrido, A.; Gómez-Ramos, A. Evaluation of drought management in irrigated areas. Agric. Econ. 2003, 29, 211–229. https://doi.org/10.1016/S0169-5150(03)00084-7.
  • 19.
    Lopez-Nicolas, A.; Pulido-Velazquez, M.; Macian-Sorribes, H. Economic risk assessment of drought impacts on irrigated agriculture. J. Hydrol. 2017, 550, 580–589. https://doi.org/10.1016/J.JHYDROL.2017.05.004.
  • 20.
    Martínez-Ibarra, E. Climate, water and tourism: Causes and effects of droughts associated with urban development and tourism in Benidorm (Spain). Int. J. Biometeorol. 2015, 59, 487–501. https://doi.org/10.1007/s00484-014-0851-3.
  • 21.
    Christian, J.I.; Basara, J.B.; Hunt, E.D.; et al. Flash drought development and cascading impacts associated with the 2010 Russian heatwave. Environ. Res. Lett. 2020, 15, 094078. https://doi.org/10.1088/1748-9326/AB9FAF.
  • 22.
    Caloiero, T.; Coscarelli, R. Analysis of the Characteristics of Dry and Wet Spells in a Mediterranean Region. Environ. Process. 2020, 7, 691–701. https://doi.org/10.1007/s40710-020-00454-3.
  • 23.
    el Hafyani, M.; Khalid, E. Literature Review on Stochastic Modeling of Wet and Dry Spells. J. Environ. Earth Sci. 2024, 6, 241–260. https://doi.org/10.30564/jees.v6i3.6964.
  • 24.
    Ferijal, T.; Mechram, S.; Fauzi, A. Spatial and temporal analysis of dry spell variability in Aceh, Indonesia: Implications for drought mitigation and agricultural planning. IOP Conf. Ser. Earth Environ. Sci. 2025, 1476, 012009. https://doi.org/10.1088/1755-1315/1476/1/012009.
  • 25.
    Martin-Vide, J.; Gomez, L. Regionalization of Peninsular Spain based on the length of dry spells. Int. J. Climatol. 1999, 19, 537–555. https://doi.org/10.1002/(SICI)1097-0088(199904)19:5<537::AID-JOC371>3.0.CO;2-X.
  • 26.
    Sirangelo, B.; Caloiero, T.; Coscarelli, R.; et al. A Stochastic Approach for the Analysis of Long Dry Spells with Different Threshold Values in Southern Italy. Water 2019, 11, 2026. https://doi.org/10.3390/w11102026.
  • 27.
    Breinl, K.; Di Baldassarre, G.; Mazzoleni, M.; et al. Extreme dry and wet spells face changes in their duration and timing. Environ. Res. Lett. 2020, 15, 074040. https://doi.org/10.1088/1748-9326/ab7d05.
  • 28.
    Manning, C.; Widmann, M.; Bevacqua, E.; et al. Increased probability of compound long-duration dry and hot events in Europe during summer (1950–2013). Environ. Res. Lett. 2019, 14, 094006. https://doi.org/10.1088/1748-9326/ab23bf.
  • 29.
    Raymond, F.; Drobinski, P.; Ullmann, A.; et al. Extreme dry spells over the Mediterranean Basin during the wet season: Assessment of HyMeX/Med-CORDEX regional climate simulations (1979–2009). Int. J. Climatol. 2018, 38, 3090–3105. https://doi.org/10.1002/joc.5487.
  • 30.
    Rivoire, P.; Tramblay, Y.; Neppel, L.; et al. Impact of the dry-day definition on Mediterranean extreme dry-spell analysis. Nat. Hazards Earth Syst. Sci. 2019, 19, 1629–1638. https://doi.org/10.5194/nhess-19-1629-2019.
  • 31.
    Beguería, S.; Vicente-Serrano, S.M.; López-Moreno, J.I.; et al. Annual and seasonal mapping of peak intensity, magnitude and duration of extreme precipitation events across a climatic gradient, northeast Spain. Int. J. Climatol. 2009, 29, 1759–1779. https://doi.org/10.1002/joc.1808.
  • 32.
    Catalini, C.G.; Guillen, N.F.; Bazzano, F.M.; et al. Web Mapping of Extreme Daily Rainfall Data in Central and Northern Argentina. J. Hydrol. Eng. 2021, 26, 05021013. https://doi.org/10.1061/(ASCE)HE.1943-5584.0002077.
  • 33.
    Formetta, G.; Dallan, E.; Borga, M.; et al. Sub-daily precipitation returns levels in ungauged locations: Added value of combining observations with convection permitting simulations. Adv. Water Resour. 2024, 194, 104851. https://doi.org/10.1016/j.advwatres.2024.104851.
  • 34.
    Iliopoulou, T.; Koutsoyiannis, D.; Malamos, N.; et al. A stochastic framework for rainfall intensity–time scale–return period relationships. Part ΙΙ: Point modelling and regionalization over Greece. Hydrol. Sci. J. 2024, 69, 1092–1112. https://doi.org/10.1080/02626667.2024.2345814.
  • 35.
    Cindrić Kalin, K.; Pasarić, Z. Regional patterns of dry spell durations in Croatia. Int. J. Climatol. 2022, 42, 5503–5519. https://doi.org/10.1002/joc.7545.
  • 36.
    Sarhadi, A.; Heydarizadeh, M. Regional frequency analysis and spatial pattern characterization of Dry Spells in Iran. Int. J. Climatol. 2014, 34, 835–848. https://doi.org/10.1002/joc.3726.
  • 37.
    González-Hidalgo, J.C.; Vicente-Serrano, S.M.; Peña-Angulo, D.; et al. High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula). Acta Geophys. 2018, 66, 381–392. https://doi.org/10.1007/s11600-018-0138-x.
  • 38.
    Trullenque-Blanco, V.; Beguería, S.; Vicente-Serrano, S.M.; et al. Catalogue of drought events in peninsular Spanish along 1916–2020 period. Sci. Data 2024, 11, 703. https://doi.org/10.1038/s41597-024-03484-w.
  • 39.
    Camarero, J.J.; Gazol, A.; Sangüesa-Barreda, G.; et al. Forest growth responses to drought at short- and long-term scales in Spain: Squeezing the stress memory from tree rings. Front. Ecol. Evol. 2018, 6, 9. https://doi.org/10.3389/fevo.2018.00009.
  • 40.
    Iglesias, A.; Rosenzweig, C.; Pereira, D. Agricultural impacts of climate change in Spain: Developing tools for a spatial analysis. Glob. Environ. Chang. 2000, 10, 69–80. https://doi.org/10.1016/S0959-3780(00)00010-8.
  • 41.
    Peña-Gallardo, M.; Martín Vicente-Serrano, S.; Domínguez-Castro, F.; et al. The impact of drought on the productivity of two rainfed crops in Spain. Nat. Hazards Earth Syst. Sci. 2019, 19, 1215–1234. https://doi.org/10.5194/nhess-19-1215-2019.
  • 42.
    Vicente-Serrano, S.M.; Peña-Angulo, D.; Murphy, C.; et al. The complex multi-sectoral impacts of drought: Evidence from a mountainous basin in the Central Spanish Pyrenees. Sci. Total Environ. 2021, 769, 144702. https://doi.org/10.1016/j.scitotenv.2020.144702.
  • 43.
    Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; et al. A complete daily precipitation database for northeast Spain: Reconstruction, quality control, and homogeneity. Int. J. Climatol. 2010, 30, 1146–1163. https://doi.org/10.1002/joc.1850.
  • 44.
    Beguería, S.; Tomas-Burguera, M.; Serrano-Notivoli, R.; et al. Gap filling of monthly temperature data and its effect on climatic variability and trends. J. Clim. 2019, 32, 7797–7821. https://doi.org/10.1175/JCLI-D-19-0244.1.
  • 45.
    Beguería, S.; Tomas-Burguera, M.; Serrano-Notivoli, R.; et al. Evolution of extreme precipitation in Spain: Contribution of atmospheric dynamics and long-term trends. Stoch. Environ. Res. Risk Assess. 2025, 39, 2137–2157. https://doi.org/10.1007/s00477-025-02961-x.
  • 46.
    Vicente-Serrano, S.M.; Beguería-Portugués, S. Estimating extreme dry-spell risk in the middle Ebro valley (northeastern Spain): A comparative analysis of partial duration series with a general Pareto distribution and annual maxima series with a Gumbel distribution. Int. J. Climatol. 2003, 23, 1103–1118. https://doi.org/10.1002/joc.934.
  • 47.
    Lana, X.; Burgueño, A. Probabilities of Repeated Long Dry Episodes Based on the Poisson Distribution. An example for Catalonia (NE Spain). Theor. Appl. Climatol. 1998, 60, 111–120. https://doi.org/10.1007/s007040050037.
  • 48.
    Davy, L. Une nouvelle approache de la Sécheresse dans le basin de l’Ebre étude des épisodes secs. Revue Géographique de l’Est 1975, 1–2, 153–167.
  • 49.
    Racsko, P.; Szeidl, L.; Semenov, M. A serial approach to local stochastic weather models. Ecol. Model. 1991, 57, 27–41. https://doi.org/10.1016/0304-3800(91)90053-4.
  • 50.
    Douguedroit, A. The variations of dry spells in marseilles from 1865 to 1984. Journal of Climatology 1987, 7, 541–551. https://doi.org/10.1002/joc.3370070603.
  • 51.
    Nobilis, F. Dry spells in the Alpine country Austria. J. Hydrol. 1986, 88, 235–251. https://doi.org/10.1016/0022-1694(86)90093-4.
  • 52.
    Hershfield, D.M. on the probability of extreme rainfall events. Bull. Am. Meteorol. Soc. 1973, 54, 1013–1018. https://doi.org/10.1175/1520-0477(1973)054<1013:OTPOER>2.0.CO;2.
  • 53.
    Caeiro, F.; Gomes, M. Threshold Selection in Extreme Value Analysis; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014.
  • 54.
    Pickands, J., III. Statistical Inference Using Extreme Order Statistics. Ann. Stat. 1975, 3, 119–131. https://doi.org/10.1214/aos/1176343003.
  • 55.
    She, D.; Xia, J.; Song, J.; et al. Spatio-temporal variation and statistical characteristic of extreme dry spell in Yellow River Basin, China. Theor. Appl. Climatol. 2013, 112, 201–213. https://doi.org/10.1007/s00704-012-0731-x.
  • 56.
    Hosking, J.R.M.; Wallis, J.R. Parameter and Quantile Estimation for the Generalized Pareto Distribution. Technometrics 1987, 29, 339–349. https://doi.org/10.1080/00401706.1987.10488243.
  • 57.
    Miniussi, A.; Marra, F. Estimation of extreme daily precipitation return levels at-site and in ungauged locations using the simplified MEV approach. J. Hydrol. 2021, 603, 126946. https://doi.org/10.1016/j.jhydrol.2021.126946.
  • 58.
    Zou, W.; Yin, S.; Wang, W. Spatial interpolation of the extreme hourly precipitation at different return levels in the Haihe River basin. J. Hydrol. 2021, 598, 126273. https://doi.org/10.1016/j.jhydrol.2021.126273.
  • 59.
    Das, S.; Zhu, D.; Yin, Y. Comparison of mapping approaches for estimating extreme precipitation of any return period at ungauged locations. Stoch. Environ. Res. Risk Assess. 2020, 34, 1175–1196. https://doi.org/10.1007/s00477-020-01828-7.
  • 60.
    Yin, S.; Wang, Z.; Zhu, Z.; et al. Using Kriging with a heterogeneous measurement error to improve the accuracy of extreme precipitation return level estimation. J. Hydrol. 2018, 562, 518–529. https://doi.org/10.1016/j.jhydrol.2018.04.064.
  • 61.
    Beguería, S.; Vicente-Serrano, S.M. Mapping the hazard of extreme rainfall by peaks over threshold extreme value analysis and spatial regression techniques. J. Appl. Meteorol. Climatol. 2006, 45, 108–124. https://doi.org/10.1175/JAM2324.1.
  • 62.
    Burrough, P.A.; McDonnell, R.A. Principle of Geographic Information Systems. Oxford University Press: New York, NY, USA, 1998. Available online: https://www.researchgate.net/publication/37419765 (accessed on 29 September 2025).
  • 63.
    Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. https://doi.org/10.1002/joc.2419.
  • 64.
    Tegegn, M.G.; Berlie, A.B.; Utallo, A.U. Patterns and probabilities of dry spells and rainfall for improved rain-fed farming in Northwestern Ethiopia. Discov. Sustain. 2024, 5, 387. https://doi.org/10.1007/s43621-024-00576-w.
  • 65.
    Pérez-Sánchez, J.; Senent-Aparicio, J. Analysis of meteorological droughts and dry spells in semiarid regions: A comparative analysis of probability distribution functions in the Segura Basin (SE Spain). Theor. Appl. Climatol. 2018, 133, 1061–1074. https://doi.org/10.1007/s00704-017-2239-x.
  • 66.
    Anagnostopoulou, C.; Maheras, P.; Karacostas, T.; et al. Spatial and temporal analysis of dry spells in Greece. Theor. Appl. Climatol. 2003, 74, 77–91. https://doi.org/10.1007/s00704-002-0713-5.
  • 67.
    Serra, C.; Martínez, M.D.; Lana, X.; et al. European dry spell length distributions, years 1951–2000. Theor. Appl. Climatol. 2013, 114, 531–551. https://doi.org/10.1007/s00704-013-0857-5.
  • 68.
    Vargas, W.M.; Naumann, G.; Minetti, J.L. Dry spells in the River Plata Basin: An approximation of the diagnosis of droughts using daily data. Theor. Appl. Climatol. 2011, 104, 159–173. https://doi.org/10.1007/s00704-010-0335-2.
  • 69.
    Avilés, A.; Célleri, R.; Solera, A.; et al. Probabilistic Forecasting of Drought Events Using Markov Chain- and Bayesian Network-Based Models: A Case Study of an Andean Regulated River Basin. Water 2016, 8, 37. https://doi.org/10.3390/w8020037.
  • 70.
    López-Franca, N.; Sánchez, E.; Losada, T.; et al. Markovian characteristics of dry spells over the Iberian Peninsula under present and future conditions using ESCENA ensemble of regional climate models. Clim. Dyn. 2015, 45, 661–677. https://doi.org/10.1007/s00382-014-2280-8.
  • 71.
    Perzyna, G. Spatial and temporal characteristics of maximum dry spells in Southern Norway. Int. J. Climatol. 1994, 14, 895–909. https://doi.org/10.1002/joc.3370140806.
  • 72.
    Martin-Vide, J.; Olcina-Cantos, J. Climas y tiempos de España, Alianza Editorial; Alianza: Madrid, Spain, 2001; p. 43.
  • 73.
    Hempelmann, N.; Ehbrecht, C.; Alvarez-Castro, C.; et al. Web processing service for climate impact and extreme weather event analyses. Flyingpigeon (Version 1.0). Comput. Geosci. 2018, 110, 65–72. https://doi.org/10.1016/j.cageo.2017.10.004.
  • 74.
    Street, R.B. Towards a leading role on climate services in Europe: A research and innovation roadmap. Clim. Serv. 2016, 1, 2–5. https://doi.org/10.1016/j.cliser.2015.12.001.
Share this article:
How to Cite
Halifa-Marin, A.; Beguería, S.; Reig, F.; Royo-Aranda, A.; Arretxea, M.; Gil-Guallar, M.; Latorre, B.; Kenawy, A. E.; Franquesa, M.; Adell-Michavila, M.; Crespillo, A.; Pérez-Pajuelo, D.; Domínguez-Castro, F.; Gutiérrez, J. M.; Azorin-Molina, C.; Gimeno, L.; Nieto, R.; Vicente-Serrano, S. M. Spatial Assessment of Dry-Spell Hazards in Spain: Toward an Operational Climate Service. Water Scarcity and Drought 2025, 1 (1), 4.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.