• Open Access
  • Review
A Mini Review on Fundamentals and Practical Applications of Machine Learning in Algae-Based Wastewater Treatment
  • Jiawen Zhang 1,   
  • Wenshan Guo 1,   
  • Huu Hao Ngo 1, *,   
  • Xuan Thanh Bui 2,   
  • Tra Van Tung 3,   
  • Huiying Zhang 4, *

Received: 25 Feb 2025 | Revised: 14 Apr 2025 | Accepted: 12 May 2025 | Published: 14 May 2025

Abstract

With the growing demand for sustainable wastewater treatment, algae-based technologies have gained increasing attention as a promising solution, owing to their capacity to efficiently remove pollutants and recover valuable nutrients from various wastewater sources. Microalgae offer a cost-effective and environmentally friendly approach by combining biological treatment with resource recovery. Despite their potential, large-scale deployment is often constrained by environmental variability and the physiological complexity of microalgal systems. Machine learning (ML), a key branch of artificial intelligence (AI), has emerged as a powerful tool for predicting pollutant levels and water quality parameters, due to its ability to model complex, non-linear relationships between input variables and system responses. Recent advancements in ML present new opportunities to enhance process control, operational stability, and treatment efficiency. This review explores the application of ML techniques, including neural networks, support vector machines, decision trees, and genetic algorithms in the modelling, prediction, and optimisation of microalgae-based wastewater treatment processes. It further discusses the potential of intelligent algorithms to manage large, complex datasets and address operational uncertainties, while also identifying current limitations and future directions for integrating AI in algae-based treatment systems. 

References 

  • 1.
    Leal Filho, W.; Totin, E.; Franke, J.A.; et al. Understanding responses to climate-related water scarcity in Africa. Sci. Total Environ. 2022, 806, 150420. https://doi.org/10.1016/j.scitotenv.2021.150420.
  • 2.
    Razzak, S.A.; Ali, S.A.M.; Hossain, M.M.; et al. Biological CO2 fixation with production of microalgae in wastewater—A review. Renew. Sustain. Energy Rev. 2017, 76, 379–390. https://doi.org/10.1016/j.rser.2017.02.038.
  • 3.
    Goswami, R.K.; Agrawal, K.; Verma, P. An exploration of natural synergy using microalgae for the remediation of pharmaceuticals and xenobiotics in wastewater. Algal Res. 2022, 64, 102703. https://doi.org/10.1016/j.algal.2022.102703.
  • 4.
    Hena, S.; Gutierrez, L.; Croué, J.-P. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. J. Hazard. Mater. 2021, 403, 124041. https://doi.org/10.1016/j.jhazmat.2020.124041.
  • 5.
    Khan, M.; Chuenchart, W.; Surendra, K.C.; et al. Applications of artificial intelligence in anaerobic co-digestion: Recent advances and prospects. Bioresour. Technol. 2023, 370, 128501. https://doi.org/10.1016/j.biortech.2022.128501.
  • 6.
    Oruganti, R.K.; Biji, A.P.; Lanuyanger, T.; et al. Artificial intelligence and machine learning tools for high-performance microalgal wastewater treatment and algal biorefinery: A critical review. Sci. Total Environ. 2023, 876, 162797. https://doi.org/10.1016/j.scitotenv.2023.162797.
  • 7.
    Sahu, S.; Kaur, A.; Singh, G.; et al. Harnessing the potential of microalgae-bacteria interaction for eco-friendly wastewater treatment: A review on new strategies involving machine learning and artificial intelligence. J. Environ. Manag. 2023, 346, 119004. https://doi.org/10.1016/j.jenvman.2023.119004.
  • 8.
    Anand, U.; Dey, S.; Parial, D.; et al. Algae and bacteria consortia for wastewater decontamination and transformation into biodiesel, bioethanol, biohydrogen, biofertilizers and animal feed: A review. Environ. Chem. Lett. 2023, 21, 1585–1609. https://doi.org/10.1007/s10311-023-01562-w.
  • 9.
    Fu, W.; Li, X.; Yang, Y.; et al. Enhanced degradation of bisphenol A: Influence of optimization of removal, kinetic model studies, application of machine learning and microalgae-bacteria consortia. Sci. Total Environ. 2023, 858, 159876. https://doi.org/10.1016/j.scitotenv.2022.159876.
  • 10.
    Chowdhuri, I.; Pal, S.C.; Chakrabortty, R. Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Adv. Space Res. 2020, 65, 1466–1489. https://doi.org/10.1016/j.asr.2019.12.003.
  • 11.
    Zhang, D.; Dechatiwongse, P.; Del Rio-Chanona, E.A.; et al. Modelling of light and temperature influences on cyanobacterial growth and biohydrogen production. Algal Res. 2015, 9, 263–274. https://doi.org/10.1016/j.algal.2015.03.015.
  • 12.
    Okabe, S.; Kamizono, A.; Kawasaki, S.; et al. Interspecific competition and adaptation of anammox bacteria at different salinities: Experimental validation of the Monod growth model with salinity inhibition. Water Res. 2025, 271, 122883. https://doi.org/10.1016/j.watres.2024.122883.
  • 13.
    Lakshminarasimman, N.; McKnight, M.M.; Neufeld, J.D.; et al. Characterizing biofilm thickness, density, and microbial community composition in a full-scale hybrid membrane aerated biofilm reactor. Bioresour. Technol. 2025, 423, 132207. https://doi.org/10.1016/j.biortech.2025.132207.
  • 14.
    Imamoglu, E. Artificial Intelligence and/or Machine Learning Algorithms in Microalgae Bioprocesses. Bioengineering 2024, 11, 1143. https://doi.org/10.3390/bioengineering11111143.
  • 15.
    Wei, Q.; Wang, C.; Qi, Y.; et al. Optimizing algal-bacterial systems for efficient sugar cane wastewater treatment: Pollutant removal and biomass resource recovery. Bioresour. Technol. 2025, 429, 132497. https://doi.org/10.1016/j.biortech.2025.132497.
  • 16.
    Correa, I.; Drews, P.; Botelho, S.; et al. Deep Learning for Microalgae Classification. In Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, Mexico, 18–21 December 2017; pp. 20–25. https://doi.org/10.1109/ICMLA.2017.0-183.
  • 17.
    Guo, H.; Wu, S.; Tian, Y.; et al. Application of machine learning methods for the prediction of organic solid waste treatment and recycling processes: A review. Bioresour. Technol. 2021, 319, 124114. https://doi.org/10.1016/j.biortech.2020.124114.
  • 18.
    Dallora, A.L.; Eivazzadeh, S.; Mendes, E.; et al. Machine learning and microsimulation techniques on the prognosis of dementia: A systematic literature review. PLoS ONE 2017, 12, e0179804. https://doi.org/10.1371/journal.pone.0179804.
  • 19.
    Saboe, D.; Ghasemi, H.; Gao, M.M.; et al. Real-time monitoring and prediction of water quality parameters and algae concentrations using microbial potentiometric sensor signals and machine learning tools. Sci. Total Environ. 2021, 764, 142876. https://doi.org/10.1016/j.scitotenv.2020.142876.
  • 20.
    Singh, V.; Mishra, V. Exploring the effects of different combinations of predictor variables for the treatment of wastewater by microalgae and biomass production. Biochem. Eng. J. 2021, 174, 108129. https://doi.org/10.1016/j.bej.2021.108129.
  • 21.
    Sonmez, M.E.; Eczacıoglu, N.; Gumuş, N.E.; et al. Convolutional neural network—Support vector machine based approach for classification of cyanobacteria and chlorophyta microalgae groups. Algal Res. 2022, 61, 102568. https://doi.org/10.1016/j.algal.2021.102568.
  • 22.
    Liu, M.; Huang, Y.; Hu, J.; et al. Algal community structure prediction by machine learning. Environ. Sci. Ecotechnol. 2023, 14, 100233. https://doi.org/10.1016/j.ese.2022.100233.
  • 23.
    Oliveira, P.; Marcondes, F.S.; Duarte, M.S.; et al. Assessment of LSTM and GRU Models to Predict the Electricity Production from Biogas in a Wastewater Treatment Plant. In Good Practices and New Perspectives in Information Systems and Technologies; Springer Nature: Cham, Switzerland, 2024. https://doi.org/10.1007/978-3-031-60218-4_7.
  • 24.
    Rostam, N.A.P.; Ahamed Hassain Malim, N.H.; Azmee, N.A.; et al. Harmful algal blooms (HAB) open issues: A review of ecological data challenges, factor analysis and prediction approaches using data-driven method. Comput. Artif. Intell. 2023, 1, 100. https://doi.org/10.59400/cai.v1i1.100.
  • 25.
    Hossain, S.M.Z.; Sultana, N.; Razzak, S.A.; et al. Modeling and multi-objective optimization of microalgae biomass production and CO2 biofixation using hybrid intelligence approaches. Renew. Sustain. Energy Rev. 2022, 157, 112016. https://doi.org/10.1016/j.rser.2021.112016.
  • 26.
    Zhu, C.; Ji, Y.; Du, X.; et al. A smart and precise mixing strategy for efficient and cost-effective microalgae production in open ponds. Sci. Total Environ. 2022, 852, 158515. https://doi.org/10.1016/j.scitotenv.2022.158515.
  • 27.
    Chong, J.W.R.; Khoo, K.S.; Chew, K.W.; et al. Artificial intelligence-driven microalgae autotrophic batch cultivation: A comparative study of machine and deep learning-based image classification models. Algal Res. 2024, 79, 103400. https://doi.org/10.1016/j.algal.2024.103400.
  • 28.
    Abdelfattah, A.; Ali, S.S.; Ramadan, H.; et al. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environ. Sci. Ecotechnol. 2023, 13, 100205. https://doi.org/10.1016/j.ese.2022.100205.
  • 29.
    Haro, S.; Jesus, B.; Oiry, S.; et al. Microphytobenthos spatio-temporal dynamics across an intertidal gradient using Random Forest classification and Sentinel-2 imagery. Sci. Total Environ. 2022, 804, 149983. https://doi.org/10.1016/j.scitotenv.2021.149983.
  • 30.
    Meenatchi Sundaram, K.; Kumar, D.; Lee, J.; et al. Time series forecasting of microalgae cultivation for a sustainable wastewater treatment. Process Saf. Environ. Prot. 2025, 196, 106845. https://doi.org/10.1016/j.psep.2025.106845.
  • 31.
    Reimann, R.; Zeng, B.; Jakopec, M.; et al. Classification of dead and living microalgae Chlorella vulgaris by bioimage informatics and machine learning. Algal Res. 2020, 48, 101908. https://doi.org/10.1016/j.algal.2020.101908.
  • 32.
    Sayed, E.T.; Rezk, H.; Abdelkareem, M.A.; et al. Artificial neural network based modelling and optimization of microalgae microbial fuel cell. Int. J. Hydrogen Energy 2024, 52, 1015–1025. https://doi.org/10.1016/j.ijhydene.2022.12.081.
  • 33.
    Ansari, F.A.; Nasr, M.; Rawat, I.; et al. Artificial neural network and techno-economic estimation with algae-based tertiary wastewater treatment. J. Water Process Eng. 2021, 40, 101761. https://doi.org/10.1016/j.jwpe.2020.101761.
  • 34.
    Hisham, S.D., Mohamad, S.E., Shapiai, M.I.; et al. Comparison of Conventional CNN Sequential API and Functional API for Microalgae Identification. J. Adv. Res. Micro Nano Eng. 2024, 17, 96–104. https://doi.org/10.37934/armne.17.1.96104.
  • 35.
    Kushwaha, O.S.; Uthayakumar, H.; Kumaresan, K. Modeling of carbon dioxide fixation by microalgae using hybrid artificial intelligence (AI) and fuzzy logic (FL) methods and optimization by genetic algorithm (GA). Environ. Sci. Pollut. Res. 2022, 30, 24927–24948. https://doi.org/10.1007/s11356-022-19683-0.
  • 36.
    Tham, P.E.; Ng, Y.J.; Vadivelu, N.; et al. Sustainable smart photobioreactor for continuous cultivation of microalgae embedded with Internet of Things. Bioresour. Technol. 2022, 346, 126558. https://doi.org/10.1016/j.biortech.2021.126558.
  • 37.
    Lee, J.S.; Sung, Y.J.; Sim, S.J. Kinetic analysis of microalgae cultivation utilizing 3D-printed real-time monitoring system reveals potential of biological CO2 conversion. Bioresour. Technol. 2022, 364, 128014. https://doi.org/10.1016/j.biortech.2022.128014.
  • 38.
    Zambon, I.; Cecchini, M.; Egidi, G.; et al. Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes 2019, 7, 36. https://doi.org/10.3390/pr7010036.
  • 39.
    Giannino, F.; Esposito, S.; Diano, M.; et al. A predictive decision support system (DSS) for a microalgae production plant based on Internet of Things paradigm. Concurr. Comput. Pract. Exp. 2018, 30, e4476.
  • 40.
    Otálora, P.; Guzmán, J.L.; Acién, F.G.; et al. Microalgae classification based on machine learning techniques. Algal Res. 2021, 55, 102256. https://doi.org/10.1016/j.algal.2021.102256.
  • 41.
    Li, K.; Liu, Q.; Fang, F.; et al. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresour. Technol. 2019, 291, 121934. https://doi.org/10.1016/j.biortech.2019.121934.
  • 42.
    Yang, C.-T.; Kristiani, E.; Leong, Y.K.; et al. Machine learning in microalgae biotechnology for sustainable biofuel production: Advancements, applications, and prospects. Bioresour. Technol. 2024, 413, 131549. https://doi.org/10.1016/j.biortech.2024.131549.
  • 43.
    Lim, H.R.; Khoo, K.S.; Chia, W.Y.; et al. Smart microalgae farming with internet-of-things for sustainable agriculture. Biotechnol. Adv. 2022, 57, 107931. https://doi.org/10.1016/j.biotechadv.2022.107931.
  • 44.
    Xu, W.-L.; Wang, Y.-J.; Wang, Y.-T.; et al. Application and innovation of artificial intelligence models in wastewater treatment. J. Contam. Hydrol. 2024, 267, 104426. https://doi.org/10.1016/j.jconhyd.2024.104426.
  • 45.
    Beltramo, T.; Hitzmann, B. Evaluation of the linear and non-linear prediction models optimized with metaheuristics: Application to anaerobic digestion processes. Engineering in Agriculture. Environ. Food 2019, 12, 397–403. https://doi.org/10.1016/j.eaef.2019.06.001.
Share this article:
How to Cite
Zhang, J.; Guo, W.; Ngo, H. H.; Bui, X. T.; Tung, T. V.; Zhang, H. A Mini Review on Fundamentals and Practical Applications of Machine Learning in Algae-Based Wastewater Treatment. Algae and Environment 2025, 1 (1), 2. https://doi.org/10.53941/algaeenviron.2025.100002.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.