- 1.
Li, M.; Liu, N.; Wang, C.K.; et al. Large-scale use of spent grains and waste water in distilleries. Brew. Sci. Technol. 2018, 2, 113–116. https://doi.org/10.13746/j.njkj.2017294. (In Chinese)
- 2.
Utami, I.; Kautsar, D.; Akbar, R. Vinasse treatment with aerobic microbial method using activated sludge. J. Phys. Conf. Ser. 2020, 1569, 042059.
- 3.
Sillero, L.; Solera, R.; Perez, M. Improvement of the anaerobic digestion of sewage sludge by co-digestion with wine vinasse and poultry manure: Effect of different hydraulic retention times. Fuel 2022, 321, 124104. https://doi.org/10.1016/j.fuel.2022.124104.
- 4.
Almomani, F.; Bhosale, R.R.; Khraisheh, M.A.M.; et al. Enhancement of biogas production from agricultural wastes via pre-treatment with advanced oxidation processes. Fuel 2019, 253, 964–974. https://doi.org/10.1016/j.fuel.2019.05.057.
- 5.
Chen, C.; Dai, Z.; Li, Y.; et al. Fouling-free membrane stripping for ammonia recovery from real biogas slurry. Water Res. 2023, 229, 119453. https://doi.org/10.1016/j.watres.2022.119453.
- 6.
Lin, S.; Lyu, T.; Pan, M.; et al. Exploration of ammonia stripping coupled adsorption-membrane filtration process for treating kitchen waste biogas slurry. Environ. Res. 2025, 274, 121318. https://doi.org/10.1016/j.envres.2025.121318.
- 7.
Yellezuome, D.; Zhu, X.; Wang, Z.; et al. Mitigation of ammonia inhibition in anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia stripping: A review. Renew. Sustain. Energy Rev. 2022, 157, 112043. https://doi.org/10.1016/j.rser.2021.112043.
- 8.
Chisti, Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25, 294–306. https://doi.org/10.1016/b978-0-08-101023-5.00010-8.
- 9.
Morales-Amaral, M.d.M.; Gómez-Serrano, C.; Acién, F.G.; et al. Production of microalgae using centrate from anaerobic digestion as the nutrient source. Algal Res. 2015, 9, 297–305. https://doi.org/10.1016/j.algal.2015.03.018.
- 10.
Uggetti, E.; Sialve, B.; Latrille, E.; et al. Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity. Bioresour. Technol. 2014, 152, 437–443. https://doi.org/10.1016/j.biortech.2013.11.036.
- 11.
Vasseur, C.; Bougaran, G.; Garnier, M.; et al. Carbon conversion efficiency and population dynamics of a marine algae–bacteria consortium growing on simplified synthetic digestate: First step in a bioprocess coupling algal production and anaerobic digestion. Bioresour. Technol. 2012, 119, 79–87. https://doi.org/10.1016/j.biortech.2012.05.128.
- 12.
Zou, G.; Liu, Y.; Zhang, Q.; et al. Cultivation of Chlorella vulgaris in a light-receiving-plate (LRP)-enhanced raceway pond for ammonium and phosphorus removal from pretreated pig urine. Energies 2020, 13, 1644. https://doi.org/10.3390/en13071644.
- 13.
Srimongkol, P.; Sangtanoo, P.; Songserm, P.; et al. Microalgae-based wastewater treatment for developing economic and environmental sustainability: Current status and future prospects. Front. Bioeng. Biotechnol. 2022, 10, 904046. https://doi.org/10.3389/fbioe.2022.904046.
- 14.
de Carvalho, J.C.; Sydney, E.B.; Tessari, L.F.A.; et al. Culture media for mass production of microalgae. In Biofuels from Algae; Elsevier: Amsterdam, The Netherlands, 2019; pp. 33–50. https://doi.org/10.1016/b978-0-444-64192-2.00002-0.
- 15.
Tan, X.B.; Zhao, Z.Y.; Gong, H.; et al. Growth of Scenedesmus obliquus in anaerobically digested swine wastewater from different cleaning processes for pollutants removal and biomass production. Chemosphere 2024, 352, 141515. https://doi.org/10.1016/j.chemosphere.2024.141515.
- 16.
Min, K.H.; Kim, D.H.; Ki, M.R.; et al. Recent progress in flocculation, dewatering, and drying technologies for microalgae utilization: Scalable and low-cost harvesting process development. Bioresour. Technol. 2022, 344, 126404. https://doi.org/10.1016/j.biortech.2021.126404.
- 17.
Christenson, L.B.; Sims, R.C. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol. Bioeng. 2012, 109, 1674–1684. https://doi.org/10.1002/bit.24451.
- 18.
Gross, M.; Henry, W.; Michael, C.; et al. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour. Technol. 2013, 150, 195–201. https://doi.org/10.1016/j.biortech.2013.10.016.
- 19.
Zhao, X.; Kumar, K.; Gross, M.A.; et al. Evaluation of revolving algae biofilm reactors for nutrients and metals removal from sludge thickening supernatant in a municipal wastewater treatment facility. Water Res. 2018, 143, 467–478. https://doi.org/10.1016/j.watres.2018.07.001.
- 20.
Abinandan, S.; Shanthakumar, S. Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: A review. Renew. Sustain. Energy Rev. 2015, 52, 123–132. https://doi.org/10.1016/j.rser.2015.07.086.
- 21.
Nguyen, T.T.; Binh, Q.A.; Bui, X.T.; et al. Co-culture of microalgae-activated sludge for wastewater treatment and biomass production: Exploring their role under different inoculation ratios. Bioresour. Technol. 2020, 314, 123754. https://doi.org/10.1016/j.biortech.2020.123754.
- 22.
Rice, E.W.; Bridgewater, L.; Association, A.P.H. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. https://doi.org/10.5860/choice.49-6910.
- 23.
Tesson, S.V.M.; Sildever, S. The pH tolerance range of the airborne species Tetracystis vinatzeri (Chlorophyceae, Chlamydomonadales). Eur. J. Phycol. 2024, 59, 351–361. https://doi.org/10.1080/09670262.2023.2260444.
- 24.
Liu, W.; Huang, W.; Cao, Z.; et al. Microalgae simultaneously promote antibiotic removal and antibiotic resistance genes/bacteria attenuation in algal-bacterial granular sludge system. J. Hazard. Mater. 2022, 438, 129286. https://doi.org/10.1016/j.jhazmat.2022.129286.
- 25.
Jin, Y.; Zhan, W.; Wu, R.; et al. Insight into the roles of microalgae on simultaneous nitrification and denitrification in microalgal-bacterial sequencing batch reactors: Nitrogen removal, extracellular polymeric substances, and microbial communities. Bioresour. Technol. 2023, 379, 129038. https://doi.org/10.1016/j.biortech.2023.129038.
- 26.
Guo, H.; Zhangsun, X.; Li, N.; et al. Enhanced nitrogen removal of micropolluted source waterbodies using an iron activated carbon system with siliceous materials: Insights into metabolic activity, biodiversity, interactions of core genus and co-existence. Bioresour. Technol. 2023, 387, 129656. https://doi.org/10.1016/j.biortech.2023.129656.
- 27.
Shi, X.M.; Zhang, X.W.; Chen, F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb. Technol. 2000, 27, 312–318. https://doi.org/10.1016/s0141-0229(00)00208-8.
- 28.
Tang, C.C.; Tian, Y.; Liang, H.; et al. Enhanced nitrogen and phosphorus removal from domestic wastewater via algae-assisted sequencing batch biofilm reactor. Bioresour. Technol. 2018, 250, 185–190. https://doi.org/10.1016/j.biortech.2017.11.028.
- 29.
Bhattacharya, R.; Mazumder, D. Kinetic study on nitrification of ammonium nitrogen-enriched synthetic wastewater using activated sludge. Water Sci. Technol. 2020, 81, 62–70. https://doi.org/10.2166/wst.2020.080.
- 30.
Ferreira, G.F.; Ríos Pinto, L.F.; Maciel Filho, R.; et al. Effects of cultivation conditions on Chlorella vulgaris and Desmodesmus sp. grown in sugarcane agro-industry residues. Bioresour. Technol. 2021, 342, 125949. https://doi.org/10.1016/j.biortech.2021.125949.
- 31.
Zheng, M.; Li, H.; Guo, X.; et al. A semi-continuous efficient strategy for removing phosphorus and nitrogen from eel aquaculture wastewater using the self-flocculating microalga Desmodesmus sp. PW1. J. Environ. Manag. 2023, 346, 118970. https://doi.org/10.1016/j.jenvman.2023.118970.
- 32.
Yu, D.; Yan, L.; Shi, J.; et al. Phosphorus Removal and Recovery During Microalgae-Based Wastewater Treatment: A Mini-review. Int. J. Environ. Res. 2024, 18, 34. https://doi.org/10.1007/s41742-024-00590-w.
- 33.
Liu, T.; Chen, Z.; Xiao, Y.; et al. Biochemical and morphological changes triggered by nitrogen stress in the oleaginous microalga Chlorella vulgaris. Microorganisms 2022, 10, 566. https://doi.org/10.3390/microorganisms10030566.
- 34.
Ji, M.K.; Kim, H.C.; Sapireddy, V.R.; et al. Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04. Appl. Microbiol. Biotechnol. 2013, 97, 2701–2710. https://doi.org/10.1007/s00253-012-4097-x.
- 35.
Sirohi, R.; Joun, J.; Lee, J.Y.; et al. Waste mitigation and resource recovery from food industry wastewater employing microalgae-bacterial consortium. Bioresour. Technol. 2022, 352, 127129. https://doi.org/10.1016/j.biortech.2022.127129.
- 36.
Baroni, É.; Cao, B.; Webley, P.A.; et al. Nitrogen Availability and the Nature of Extracellular Organic Matter of Microalgae. Ind. Eng. Chem. Res. 2020, 59, 6795–6805. https://doi.org/10.1021/acs.iecr.9b05426.
- 37.
Harman-Ware, A.E.; Morgan, T.; Wilson, M.; et al. Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmus sp. Renew. Energy 2013, 60, 625–632. https://doi.org/10.1016/j.renene.2013.06.016.
- 38.
Li, G. High Biomass Accumulation and Pyrolysis Products of Desmodesmus sp. Cultivation in Anaerobic Digested Wastewater; China Agricultural University: Beijing, China, 2014. (In Chinese)
- 39.
Han, T.; Han, X.; Ye, X.; et al. Applying mixotrophy strategy to enhance biomass production and nutrient recovery of Chlorella pyrenoidosa from biogas slurry: An assessment of the mixotrophic synergistic effect. Bioresour. Technol. 2022, 366, 128185. https://doi.org/10.1016/j.biortech.2022.128185.
- 40.
Han, H. Decontamination of Fermented Biogas Liquid in Piggery Coupling with Lipid Production Based on Chlorella Cultivation; Guangdong University of Technology: Guangzhou, China, 2018. (In Chinese)
- 41.
Salbitani, G.; Carfagna, S. Ammonium Utilization in Microalgae: A Sustainable Method for Wastewater Treatment. Sustainability 2021, 13, 956. https://doi.org/10.3390/su13020956.