- 1.
Delgado, A.; Briciu-Burghina, C.; Regan, F. Antifouling Strategies for Sensors Used in Water Monitoring: Review and Future Perspectives. Sensors 2021, 21, 389. https://doi.org/10.3390/s21020389.
- 2.
Davidson, I.; Scianni, C.; Hewitt, C.; et al. Mini-review: Assessing the drivers of ship biofouling management--aligning industry and biosecurity goals. Biofouling 2016, 32, 411–428. https://doi.org/10.1080/08927014.2016.1149572.
- 3.
Dobretsov, S.; Rittschof, D. “Omics” Techniques Used in Marine Biofouling Studies. Int. J. Mol. Sci. 2023, 24, 10518. https://doi.org/10.3390/ijms241310518.s
- 4.
Cheah, Y.T.; Chan, D.J.C. Physiology of microalgal biofilm: a review on prediction of adhesion on substrates. Bioengineered 2021, 12, 7577–7599. https://doi.org/10.1080/21655979.2021.1980671.
- 5.
AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; et al. A Review on Membrane Biofouling: Prediction, Characterization, and Mitigation. Membranes 2022, 12, 1271. https://doi.org/10.3390/membranes12121271.
- 6.
Delgado, A.; Power, S.; Richards, C.; et al. Establishment of an antifouling performance index derived from the assessment of biofouling on typical marine sensor materials. Sci. Total Environ. 2023, 887, 164059. https://doi.org/10.1016/j.scitotenv.2023.164059.
- 7.
Krishnan, S.; Giwa, A. Advances in real-time water quality monitoring using triboelectric nanosensors. J. Mater. Chem. A 2025, 13, 11134–11158. https://doi.org/10.1039/d4ta08871a.
- 8.
Gizer, G.; Önal, U.; Ram, M.; et al. Biofouling and Mitigation Methods: A Review. Biointerface Res. Appl. Chem. 2023, 13, 185. https://doi.org/10.33263/Briac132.185.
- 9.
Al-Qwairi, F.O.; Shah, S.S.; Shabi, A.H.; et al. Stainless Steel Mesh in Electrochemistry: Comprehensive Applications and Future Prospects. Chem. Asian J. 2024, 19, e202400314. https://doi.org/10.1002/asia.202400314.
- 10.
Chen, C.; Wang, Y.; Ge, F.F. Construction of corrosion resistant stainless steel mesh and the design for protecting optical window free from biofouling. OcEng 2022, 264, 112564. https://doi.org/10.1016/j.oceaneng.2022.112564.
- 11.
Perez-Roa, R.E.; Tompkins, D.T.; Paulose, M.; et al. Effects of localised, low-voltage pulsed electric fields on the development and inhibition of Pseudomonas aeruginosa biofilms. Biofouling 2006, 22, 383–390. https://doi.org/10.1080/08927010601053541.
- 12.
Yeh, P.Y.J.; Kizhakkedathu, J.N.; Madden, J.D.; et al. Electric field and Vibration-assisted nanomolecule desorption and anti-biofouling for biosensor applications. Colloids Surf. B Biointerfaces 2007, 59, 67–73. https://doi.org/10.1016/j.colsurfb.2007.04.007.
- 13.
Long, Y.; Yu, Y.H.; Yin, X.; et al. Effective anti-biofouling enabled by surface electric disturbance from water wave-driven nanogenerator. Nano Energy 2019, 57, 558–565. https://doi.org/10.1016/j.nanoen.2018.12.069.
- 14.
Shen, Y.X.; Badireddy, A.R. A Critical Review on Electric Field-Assisted Membrane Processes: Implications for Fouling Control, Water Recovery, and Future Prospects. Membranes 2021, 11, 820. https://doi.org/10.3390/membranes11110820.
- 15.
Aghapour Aktij, S.; Taghipour, A.; Rahimpour, A.; et al. A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes. Ultra 2020, 108, 106228. https://doi.org/10.1016/j.ultras.2020.106228.
- 16.
Pérez, A.R.; Escalante, K.E. The Evolution of Sonochemistry: From the Beginnings to Novel Applications. Chempluschem 2024, 89, e202300660. https://doi.org/10.1002/cplu.202300660.
- 17.
Legg, M.; Yücel, M.K.; de Carellan, I.G.; et al. Acoustic methods for biofouling control: A review. OcEng 2015, 103, 237–247. https://doi.org/10.1016/j.oceaneng.2015.04.070.
- 18.
Fu, Q.; Song, G.L.; Yao, X.R. Biofouling and corrosion of magnesium alloys WE43 and AM60 by Chlorella vulgaris in artificial seawater. Corros. Sci. 2025, 250, 112884. https://doi.org/10.1016/j.corsci.2025.112884.
- 19.
Zhang, Q.; Yang, Z.T.; Xia, Y.G.; et al. A durable anti-corrosion and anti-fouling polyurea coating with oil-infused superhydrophobic diatomaceous earth@SiO2 cells. Colloids Surf. Physicochem. Eng. Asp. 2025, 714, 136569. https://doi.org/10.1016/j.colsurfa.2025.136569.
- 20.
Mustapha, A.T.; Zhou, C.S.; Amanor-Atiemoh, R.; et al. Kinetic modeling of inactivation of natural microbiota and Escherichia coli on cherry tomato treated with fixed multi-frequency sonication. Ultrason. Sonochem. 2020, 64, 105035. https://doi.org/10.1016/j.ultsonch.2020.105035.
- 21.
Shao, L.T.; Dong, Y.; Chen, X.J.; et al. Modeling the elimination of mature biofilms formed by Staphylococcus aureus and Salmonella spp. Using combined ultrasound and disinfectants. Ultrason. Sonochem. 2020, 69, 105269. https://doi.org/10.1016/j.ultsonch.2020.105269.
- 22.
Chen, J.H.; Wei, D.; Lim, P.E.; et al. Screening and effect evaluation of chemical inducers for enhancing astaxanthin and lipid production in mixotrophic Chromochloris zofingiensis. J. Appl. Phycol. 2022, 34, 159–176. https://doi.org/10.1007/s10811-021-02618-6.
- 23.
Ughy, B.; Nagyapati, S.; Lajko, D.B.; et al. Reconsidering Dogmas about the Growth of Bacterial Populations. Cells 2023, 12, 1430. https://doi.org/10.3390/cells12101430.
- 24.
Fadlallah, H.; Peerhossaini, H.; De Groot, C.; et al. Motility Response to Hydrodynamic Stress During the Growth Cycle in Active Fluid Suspensions. J. Fluids Eng. Trans. ASME 2021, 143, 074501. https://doi.org/10.1115/1.4050054.
- 25.
Hashemi, S.M.B.; Roohi, R.; Mahmoudi, M.R.; et al. Modeling inactivation of Listeria monocytogenes, Shigella sonnei, Byssochlamys fulva and Saccharomyces cerevisiae and ascorbic acid and β-carotene degradation kinetics in tangerine juice by pulsed-thermosonication. LWT Food Sci. Technol. 2019, 111, 612–621. https://doi.org/10.1016/j.lwt.2019.05.060.
- 26.
Gule, N.P.; Begum, N.M.; Klumperman, B. Advances in biofouling mitigation: A review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 535–555. https://doi.org/10.1080/10643389.2015.1114444.
- 27.
Li, C.Y.; Guo, X.Y.; Wang, X.; et al. Membrane fouling mitigation by coupling applied electric field in membrane system: Configuration, mechanism and performance. Electrochim. Acta 2018, 287, 124–134. https://doi.org/10.1016/j.electacta.2018.06.150.
- 28.
Tong, C.Y.; Chua, M.X.; Tan, W.H.; et al. Microalgal extract as bio-coating to enhance biofilm growth of marine microalgae on microporous membranes. Chemosphere 2023, 315, 137712. https://doi.org/10.1016/j.chemosphere.2022.137712.
- 29.
Erwin, E.G.; McLaughlin, D.L.; Stewart, R.D. Installation Matters: Implications for In Situ Water Quality Monitoring. Water Resour. Res. 2021, 57, e2020WR028294. https://doi.org/10.1029/2020WR028294.
- 30.
Pandit, S.; Shanbhag, S.; Mauter, M.; et al. Influence of Electric Fields on Biofouling of Carbonaceous Electrodes. Environ. Sci. Technol. 2017, 51, 10022–10030. https://doi.org/10.1021/acs.est.6b06339.
- 31.
Chen, X.; Noy, A. Antifouling strategies for protecting bioelectronic devices. APL Mater. 2021, 9, 020701. https://doi.org/10.1063/5.0029994.
- 32.
Thamaraiselvan, C.; Ronen, A.; Lerman, S.; et al. Low voltage electric potential as a driving force to hinder biofouling in self-supporting carbon nanotube membranes. Water Res. 2018, 129, 143–153. https://doi.org/10.1016/j.watres.2017.11.004.
- 33.
Koren, K.; McGraw, C.M. Let’s Talk about Slime; or Why Biofouling Needs More Attention in Sensor Science. ACS Sens. 2023, 8, 2432–2439. https://doi.org/10.1021/acssensors.3c00961.
- 34.
Alotaibi, G.F.; Bukhari, M.A. Factors influencing bacterial biofilm formation and development. Am. J. Biomed. Sci. Res 2021, 12, 617–626. https://doi.org/10.34297/AJBSR.2021.12.001820.
- 35.
Zhao, A.L.; Sun, J.Z.; Liu, Y.P. Understanding bacterial biofilms: From definition to treatment strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. https://doi.org/10.3389/fcimb.2023.1137947.
- 36.
Elcik, H.; Alpatova, A.; Gonzalez-Gil, G.; et al. Elucidating biofouling over thermal and spatial gradients in seawater membrane distillation in hot climatic conditions. Water Res. 2022, 223, 118983. https://doi.org/10.1016/j.watres.2022.118983.
- 37.
Villanueva, V.D.; Font, J.; Schwartz, T.; et al. Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects. Biofouling 2011, 27, 59–71. https://doi.org/10.1080/08927014.2010.538841.
- 38.
Kunlasubpreedee, P.; Tobino, T.; Nakajima, F. Influence of High-Frequency, Low-Voltage Alternating Electric Fields on Biofilm Development Processes of Escherichia coli and Pseudomonas aeruginosa. Water 2023, 15, 3055. https://doi.org/10.3390/w15173055.
- 39.
Bai, M.; Dai, J.M.; Li, C.Z.; et al. Antibacterial and antibiofilm performance of low-frequency ultrasound against Escherichia coli O157:H7 and its application in fresh produce. Int. J. Food Microbiol. 2023, 400, 110266. https://doi.org/10.1016/j.ijfoodmicro.2023.110266.
- 40.
Carneiro, C.R.; Leite, N.N.; Oliveira, A.V.D.; et al. Mathematical modeling for the prediction of biofilm formation and removal in the food industry as strategy to control microbiological resistance. Food Res. Int. 2024, 197, 115248. https://doi.org/10.1016/j.foodres.2024.115248.
- 41.
Cha, M.Y.; Ha, J.W. Low-energy X-ray irradiation effectively inactivates major foodborne pathogen biofilms on various food contact surfaces. Food Microbiol. 2022, 106, 104054. https://doi.org/10.1016/j.fm.2022.104054.
- 42.
Panigrahi, C.; Mishra, H.N.; De, S. Modelling the inactivation kinetics of Leuconostoc mesenteroides, Saccharomyces cerevisiae, and total coliforms during ozone treatment of sugarcane juice. LWT Food Sci. Technol. 2021, 144, 111218. https://doi.org/10.1016/j.lwt.2021.111218.
- 43.
Esua, O.J.; Sun, D.W.; Ajani, C.K.; et al. Modelling of inactivation kinetics of Escherichia coli and Listeria monocytogenes on grass carp treated by combining ultrasound with plasma functionalized buffer. Ultrason. Sonochem. 2022, 88, 106086. https://doi.org/10.1016/j.ultsonch.2022.106086.