- 1.
Alharbi, R.M.; Abdel-Raouf, N.; Mohamed, M.S.; et al. Phycomediation of cadmium contaminated aqueous solutions using Chlamydomonas sp.: Process optimization and adsorption characterization. Front. Bioeng. Biotechnol. 2025, 13, 1558757.
- 2.
Gupta, N.; Arunachalam, S. Assessment of human health risks posed by toxic heavy metals in Tilapia fish (Oreochromis mossambicus) from the Cauvery River, India. Front. Public Health 2024, 12, 1402421.
- 3.
Wei, Y.; Song, L.; Ma, Y.; et al. Sedimentary heavy metal interactions with phytoplankton and zooplankton across the Bohai Sea. J. Environ. Manag. 2025, 381, 125226.
- 4.
Iddrisu, L.; Danso, F.; Cheong, K.-L.; et al. Polysaccharides as Protective Agents against Heavy Metal Toxicity. Foods 2024, 13, 853.
- 5.
Saravanan, P.; Saravanan, V.; Rajeshkannan, R.; et al. Comprehensive review on toxic heavy metals in the aquatic system: Sources, identification, treatment strategies, and health risk assessment. Environ. Res. 2024, 258, 119440.
- 6.
Jomova, K.; Alomar, S.Y.; Nepovimova, E.; et al. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2025, 99, 153–209.
- 7.
Fei, Y.; Hu, Y.H. Recent progress in removal of heavy metals from wastewater: A comprehensive review. Chemosphere 2023, 335, 139077.
- 8.
Mandal, R.R.; Bashir, Z.; Raj, D. Microbe-assisted phytoremediation for sustainable management of heavy metal in wastewater—A green approach to escalate the remediation of heavy metals. J. Environ. Manag. 2025, 375, 124199.
- 9.
Sopanrao, K.S.; Venugopal, A.; Patel, C.M.; et al. Phosphoric acid-modified bentonite-chitosan composite beads: A novel and cost-effective adsorbent for multi-metal wastewater treatment. Environ. Sci. Pollut. Res. 2024. https://doi.org/10.1007/s11356-024-35653-0.
- 10.
Anderson, A.; Anbarasu, A.; Pasupuleti, R.R.; et al. Treatment of heavy metals containing wastewater using biodegradable adsorbents: A review of mechanism and future trends. Chemosphere 2022, 295, 133724.
- 11.
Ding, C.; Ding, Z.; Liu, Q.; et al. Advances in mechanism for the microbial transformation of heavy metals: Implications for bioremediation strategies. Chem. Commun. 2024, 60, 12315–12332.
- 12.
Chan, S.S.; Khoo, K.S.; Abdullah, R.; et al. Harnessing microalgae for metal nanoparticles biogenesis using heavy metal ions from wastewater as a metal precursor: A review. Sci. Total Environ. 2024, 957, 176989.
- 13.
Aneja, R.K.; Chaudhary, G.; Ahluwalia, S.S.; et al. Biosorption of Pb2+ and Zn2+ by Non-Living Biomass of Spirulina sp. Indian J. Microbiol. 2011, 50, 438–442.
- 14.
Guo, Y.; Liu, L.; Shi, X.; et al. Overexpression of the RAV Transcription Factor OsAAT1 Confers Enhanced Arsenic Tolerance by Modulating Auxin Hemostasis in Rice. J. Agric. Food Chem. 2024, 72, 24576–24586.
- 15.
Gu, J.J.; Dou, X.X.; Zhou, J.L.; et al. Phytohormone-augmented microalgae: A dual-functional solution for pharmaceutical contaminants removal and resource recovery. J. Hazard. Mater. 2025, 496, 139379.
- 16.
Manikandan, A.; Suresh Babu, P.; Shyamalagowri, S.; et al. Emerging role of microalgae in heavy metal bioremediation. J. Basic Microbiol. 2022, 62, 330–347.
- 17.
Piotrowska-Niczyporuk, A.; Bajguz, A.; Kotowska, U.; et al. Auxins and Cytokinins Regulate Phytohormone Homeostasis and Thiol-Mediated Detoxification in the Green Alga Acutodesmus obliquus Exposed to Lead Stress. Sci. Rep. 2020, 10, 10193.
- 18.
Abdelfattah, A.; Ali, S.S.; Ramadan, H.; et al. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environ. Sci. Ecotechnol. 2023, 13, 100205.
- 19.
Wang, C.; Qi, M.; Guo, J.; et al. The Active Phytohormone in Microalgae: The Characteristics, Efficient Detection, and Their Adversity Resistance Applications. Molecules 2021, 27, 46.
- 20.
Khavari, F.; Saidijam, M.; Taheri, M.; et al. Microalgae: Therapeutic potentials and applications. Mol. Biol. Rep. 2021, 48, 4757–4765.
- 21.
Tounosu, N.; Sesoko, K.; Hori, K.; et al. Cis-regulatory elements and transcription factors related to auxin signaling in the streptophyte algae Klebsormidium nitens. Sci. Rep. 2023, 13, 9635.
- 22.
Monteiro, C.M.; Castro, P.M.; Malcata, F.X. Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnol. Prog. 2012, 28, 299–311.
- 23.
Duan, L.; Jiang, H.; Cai, B.; et al. Selective ·OH generation in Fenton-like reaction by dual sulfur coordination of iron organic frameworks. Water Res. 2025, 282, 123653.
- 24.
Wang, S.; Yang, S.; Wang, J. The combined effects of copper and zinc on Arabidopsis involve differential regulation of chlorophyll synthesis and photosystem function. Plant Physiol. Biochem. PPB 2024, 216, 109160.
- 25.
Fettweis, A.; Bergen, B.; Hansul, S.; et al. Correlated Ni, Cu, and Zn Sensitivities of 8 Freshwater Algal Species and Consequences for Low-Level Metal Mixture Effects. Environ. Toxicol. Chem. 2021, 40, 2013–2023.
- 26.
Hamed, S.M.; Zinta, G.; Klöck, G.; et al. Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus. Ecotoxicol. Environ. Saf. 2017, 140, 256–263.
- 27.
Dos Reis, L.L.; Alho, L.O.G.; de Abreu, C.B.; et al. Using multiple endpoints to assess the toxicity of cadmium and cobalt for chlorophycean Raphidocelis subcapitata. Ecotoxicol. Environ. Saf. 2021, 208, 111628.
- 28.
Leong, Y.K.; Chang, J.S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020, 303, 122886.
- 29.
Poyton, M.F.; Pullanchery, S.; Sun, S.; et al. Zn(2+) Binds to Phosphatidylserine and Induces Membrane Blebbing. J. Am. Chem. Soc. 2020, 142, 18679–18686.
- 30.
Liu, H.; Chen, S.; Zhang, H.; et al. Effects of copper sulfate algaecide on the cell growth, physiological characteristics, the metabolic activity of Microcystis aeruginosa and raw water application. J. Hazard. Mater. 2023, 445, 130604.
- 31.
Shomali, A.; Das, S.; Sarraf, M.; et al. Modulation of plant photosynthetic processes during metal and metalloid stress, and strategies for manipulating photosynthesis-related traits. Plant Physiol. Biochem. PPB 2024, 206, 108211.
- 32.
Da, X.; Guo, J.; Yan, P.; et al. Characterizing membrane anchoring of leaf-form ferredoxin-NADP(+) oxidoreductase in rice. Plant Cell Environ. 2023, 46, 1195–1206.
- 33.
Liu, L.; Li, S.; Guo, J.; et al. Low temperature tolerance is depressed in wild-type and abscisic acid-deficient mutant barley grown in Cd-contaminated soil. J. Hazard. Mater. 2022, 430, 128489.
- 34.
Leon-Vaz, A.; Romero, L.C.; Gotor, C.; et al. Effect of cadmium in the microalga Chlorella sorokiniana: A proteomic study. Ecotoxicol. Environ. Saf. 2021, 207, 111301.
- 35.
Chen, F.; Pan, X.; Luo, Z.; et al. Enhancing rice (Oryza sativa L.) resilience to cadmium stress through nanoparticle and rhizobacterial strategies: A sustainable approach to heavy metal remediation. Environ. Pollut. 2025, 383, 126847.
- 36.
Sychta, K.; Slomka, A.; Kuta, E. Insights into Plant Programmed Cell Death Induced by Heavy Metals-Discovering a Terra Incognita. Cells 2021, 10, 65.
- 37.
El-Samad, L.M.; Arafat, E.A.; Nour, O.M.; et al. Biomonitoring of Heavy Metal Toxicity in Freshwater Canals in Egypt Using Creeping Water Bugs (Ilyocoris cimicoides): Oxidative Stress, Histopathological, and Ultrastructural Investigations. Antioxidants 2024, 13, 1309.
- 38.
Nowicka, B. Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environ. Sci. Pollut. Res. Int. 2022, 29, 16860–16911.
- 39.
Tang, D.; Li, X.; Zhang, L.; et al. Reactive oxygen species-mediated signal transduction and utilization strategies in microalgae. Bioresour. Technol. 2025, 418, 132004.
- 40.
Nguyen, N.H.; Nguyen, Q.T.; Dang, D.H.; et al. Phytohormones enhance heavy metal responses in Euglena gracilis: Evidence from uptake of Ni, Pb and Cd and linkages to hormonomic and metabolomic dynamics. Environ. Pollut. 2023, 320, 121094.
- 41.
Du, F.; Wang, Y.; Wang, J.; et al. The basic helix-loop-helix transcription factor gene, OsbHLH38, plays a key role in controlling rice salt tolerance. J. Integr. Plant Biol. 2023, 65, 1859–1873.
- 42.
Narayanan, M.; Ma, Y. Mitigation of heavy metal stress in the soil through optimized interaction between plants and microbes. J. Environ. Manag. 2023, 345, 118732.
- 43.
Li, C.; Zheng, C.; Fu, H.; et al. Contrasting detoxification mechanisms of Chlamydomonas reinhardtii under Cd and Pb stress. Chemosphere 2021, 274, 129771.
- 44.
Zhang, Y.; Zhan, J.; Ma, C.; et al. Root-associated bacterial microbiome shaped by root selective effects benefits phytostabilization by Athyrium wardii (Hook.). Ecotoxicol. Environ. Saf. 2024, 269, 115739.
- 45.
Danouche, M.; El Ghatchouli, N.; Arroussi, H. Overview of the management of heavy metals toxicity by microalgae. J. Appl. Phycol. 2022, 34, 475–488.
- 46.
Li, N.; Wang, P.; Wang, S.; et al. Electrostatic charges on microalgae surface: Mechanism and applications. J. Environ. Chem. Eng. 2022, 10, 107516.
- 47.
Sultana, N.; Hossain, S.M.Z.; Mohammed, M.E.; et al. Experimental study and parameters optimization of microalgae based heavy metals removal process using a hybrid response surface methodology-crow search algorithm. Sci. Rep. 2020, 10, 15068.
- 48.
Tripathi, S.; Poluri, K.M. Heavy metal detoxification mechanisms by microalgae: Insights from transcriptomics analysis. Environ. Pollut. 2021, 285, 117443.
- 49.
Spain, O.; Plohn, M.; Funk, C. The cell wall of green microalgae and its role in heavy metal removal. Physiol. Plant. 2021, 173, 526–535.
- 50.
Zhang, L.; Li, N.; Xiao, X.; et al. Physiological and transcriptomic responses of the microalga Isochrysis galbana during exposure to Hg(II) stress. World J. Microbiol. Biotechnol. 2025, 41, 164.
- 51.
Balzano, S.; Sardo, A.; Blasio, M.; et al. Microalgal Metallothioneins and Phytochelatins and Their Potential Use in Bioremediation. Front. Microbiol. 2020, 11, 517.
- 52.
CHENG Z, WANG C, TANG F, et al. The cell wall functions in plant heavy metal response [J]. Ecotoxicology and environmental safety, 2025, 299: 118326.
- 53.
Xia, L.; Li, H.; Song, S. Cell surface characterization of some oleaginous green algae. J. Appl. Phycol. 2016, 28, 2323–2332.
- 54.
Cavalletti, E.; Romano, G.; Palma Esposito, F.; et al. Copper Effect on Microalgae: Toxicity and Bioremediation Strategies. Toxics 2022, 10, 527.
- 55.
Xiao, X.; Li, W.; Jin, M.; et al. Responses and tolerance mechanisms of microalgae to heavy metal stress: A review. Mar. Environ. Res. 2023, 183, 105805.
- 56.
Rezayian, M.; Niknam, V.; Ebrahimzadeh, H. Oxidative damage and antioxidative system in algae. Toxicol. Rep. 2019, 6, 1309–1313.
- 57.
Liu, A.; Zhang, L.; Zhou, A.; et al. Metabolomic and physiological changes of acid-tolerant Graesiella sp. MA1 during long-term acid stress. Environ. Sci. Pollut. Res. Int. 2023, 30, 97209–97218.
- 58.
Sun, X.M.; Ren, L.J.; Zhao, Q.Y.; et al. Enhancement of lipid accumulation in microalgae by metabolic engineering. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 552–566.
- 59.
Dahuja, A.; Kumar, R.R.; Sakhare, A.; et al. Role of ATP-binding cassette transporters in maintaining plant homeostasis under abiotic and biotic stresses. Physiol. Plant. 2021, 171, 785–801.
- 60.
Danouche, M.; El Ghachtouli, N.; El Arroussi, H. Phycoremediation mechanisms of heavy metals using living green microalgae: Physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 2021, 7, e07609.
- 61.
Lu, Y.; Xu, J. Phytohormones in microalgae: A new opportunity for microalgal biotechnology? Trends Plant Sci. 2015, 20, 273–282.
- 62.
Stirk, W.A.; Ördög, V.; Novák, O.; et al. Auxin and cytokinin relationships in 24 microalgal strains1. J. Phycol. 2013, 49, 459–467.
- 63.
Romanenko, K.; Kosakovskaya, I.; Romanenko, P. Phytohormones of Microalgae: Biological Role and Involvement in the Regulation of Physiological Processes. Int. J. Algae 2016, 18, 179–201.
- 64.
Shah, S.; Li, X.; Jiang, Z.; et al. Exploration of the phytohormone regulation of energy storage compound accumulation in microalgae. Food Energy Secur. 2022, 11, e418.
- 65.
Zhou, J.L.; Vadiveloo, A.; Chen, D.Z.; et al. Regulation effects of indoleacetic acid on lipid production and nutrient removal of Chlorella pyrenoidosa in seawater-containing wastewater. Water Res. 2024, 248, 120864.
- 66.
Stirk, W.A.; Van Staden, J. Potential of phytohormones as a strategy to improve microalgae productivity for biotechnological applications. Biotechnol. Adv. 2020, 44, 107612.
- 67.
Jusoh, M.; Loh, S.H.; Aziz, A.; et al. Gibberellin Promotes Cell Growth and Induces Changes in Fatty Acid Biosynthesis and Upregulates Fatty Acid Biosynthetic Genes in Chlorella vulgaris UMT-M1. Appl. Biochem. Biotechnol. 2019, 188, 450–459.
- 68.
Yu, Z.; Song, M.; Pei, H.; et al. The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. Bioresour. Technol. 2017, 239, 87–96.
- 69.
Sun, X.M.; Ren, L.J.; Zhao, Q.Y.; et al. Application of chemicals for enhancing lipid production in microalgae-a short review. Bioresour. Technol. 2019, 293, 122135.
- 70.
Piotrowska-Niczyporuk, A.; Bajguz, A.; Zambrzycka-Szelewa, E.; et al. Exogenously applied auxins and cytokinins ameliorate lead toxicity by inducing antioxidant defence system in green alga Acutodesmus obliquus. Plant Physiol. Biochem. PPB 2018, 132, 535–546.
- 71.
Zhao, Y.; Wang, H.P.; Han, B.; et al. Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: A review. Bioresour. Technol. 2019, 274, 549–556.
- 72.
Zamora, O.; Schulze, S.; Azoulay-Shemer, T.; et al. Jasmonic acid and salicylic acid play minor roles in stomatal regulation by CO2, abscisic acid, darkness, vapor pressure deficit and ozone. Plant J. Cell Mol. Biol. 2021, 108, 134–150.
- 73.
Owusu, V.; Mira, M.; Soliman, A.; et al. Suppression of the maize phytoglobin ZmPgb1.1 promotes plant tolerance against Clavibacter nebraskensis. Planta 2019, 250, 1803–1818.
- 74.
Wang, W.; Sun, Y.; Li, G.; et al. Brassinosteroids promote parenchyma cell and secondary xylem development in sugar beet (Beta vulgaris L.) root. Plant Direct 2021, 5, e340.
- 75.
Dadras, A.; Duminil, P.; de Vries, S.; et al. Algal origins of core land plant stress response subnetworks. Plant J. Cell Mol. Biol. 2025, 122, e70291.
- 76.
Komatsu, K.; Takezawa, D.; Sakata, Y. Decoding ABA and osmostress signalling in plants from an evolutionary point of view. Plant Cell Environ. 2020, 43, 2894–2911.
- 77.
Jusoh, M.; Loh, S.H.; Chuah, T.S.; et al. Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Res. 2015, 9, 14–20.
- 78.
Zhang, N.X.; Messelink, G.J.; Alba, J.M.; et al. Phytophagy of omnivorous predator Macrolophus pygmaeus affects performance of herbivores through induced plant defences. Oecologia 2018, 186, 101–113.
- 79.
Carrillo-Carrasco, V.P.; van Galen, M.; Bronkhorst, J.; et al. Auxin and tryptophan trigger common responses in the streptophyte alga Penium margaritaceum. Curr. Biol. 2025, 35, 2078–2087.e4.
- 80.
Zhao, D.; Wang, H.; Chen, S.; et al. Phytomelatonin: An Emerging Regulator of Plant Biotic Stress Resistance. Trends Plant Sci. 2021, 26, 70–82.
- 81.
Khasin, M.; Cahoon, R.E.; Alvarez, S.; et al. Synthesis, secretion, and perception of abscisic acid regulates stress responses in Chlorella sorokiniana. bioRxiv 2017, 180547. https://doi.org/10.1101/180547.
- 82.
Hernández-García, J.; Briones-Moreno, A.; Dumas, R.; et al. Origin of Gibberellin-Dependent Transcriptional Regulation by Molecular Exploitation of a Transactivation Domain in DELLA Proteins. Mol. Biol. Evol. 2019, 36, 908–918.
- 83.
Zamani-Ahmadmahmoodi, R.; Malekabadi, M.B.; Rahimi, R.; et al. Aquatic pollution caused by mercury, lead, and cadmium affects cell growth and pigment content of marine microalga, Nannochloropsis oculata. Environ. Monit. Assess. 2020, 192, 330.
- 84.
Zhao, Y.; Ngo, H.H.; Yu, X. Phytohormone-like small biomolecules for microalgal biotechnology. Trends Biotechnol. 2022, 40, 1025–1028.
- 85.
Papry, R.I.; Fujisawa, S.; Yinghan, Z.; et al. Integrated effects of important environmental factors on arsenic biotransformation and photosynthetic efficiency by marine microalgae. Ecotoxicol. Environ. Saf. 2020, 201, 110797.
- 86.
da Silva Ferreira, V.; Sant’anna, C. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J. Microbiol. Biotechnol. 2017, 33, 20.
- 87.
Yang, J.; Li, W.; Xing, C.; et al. Ca2+ participates in the regulation of microalgae triacylglycerol metabolism under heat stress. Environ. Res. 2022, 208, 112696.
- 88.
Wang, W.; Xue, Y.; Li, B.; et al. Effect of peroxisome proliferation and salt stress on enhancing the potential of microalgae as biodiesel feedstock. Renew. Sustain. Energy Rev. 2025, 212, 115398.
- 89.
Gonçalves, S.C.; Cui, Z.; Kumar, K.S. Editorial: Biotechnological solutions to assess, monitor and remediate metal pollution in the marine environment. Front. Mar. Sci. 2024, 11, 1345500.
- 90.
Lobus, N.V.; Kulikovskiy, M.S. The Co-Evolution Aspects of the Biogeochemical Role of Phytoplankton in Aquatic Ecosystems: A Review. Biology 2023, 12, 92.
- 91.
Mok, M.C.; Martin, R.C.; Mok, D.W.S. Cytokinins: Biosynthesis metabolism and perception. Vitr. Cell. Dev. Biol. Plant 2000, 36, 102–107.
- 92.
Kumar, S.; Shah, S.H.; Vimala, Y.; et al. Abscisic acid: Metabolism, transport, crosstalk with other plant growth regulators, and its role in heavy metal stress mitigation. Front. Plant Sci. 2022, 13, 972856.
- 93.
Basu, S.; Rabara, R. Abscisic acid—An enigma in the abiotic stress tolerance of crop plants. Plant Gene 2017, 11, 90–98.
- 94.
Nguyen, H.N.; Kisiala, A.B.; Emery, R.J.N. The roles of phytohormones in metal stress regulation in microalgae. J. Appl. Phycol. 2020, 32, 3817–3829.
- 95.
Ghosh, A.; Sah, D.; Chakraborty, M.; et al. Mechanism and application of bacterial exopolysaccharides: An advanced approach for sustainable heavy metal abolition from soil. Carbohydr. Res. 2024, 544, 109247.
- 96.
Verma, N.; Prasad, S.M. Regulation of redox homeostasis in cadmium stressed rice field cyanobacteria by exogenous hydrogen peroxide and nitric oxide. Sci. Rep. 2021, 11, 2893.
- 97.
Yoshida, T.; Fujita, Y.; Sayama, H.; et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. Cell Mol. Biol. 2010, 61, 672–685.
- 98.
Ibuot, A.; Dean, A.; Pittman, J. Characterisation of Metal Transport Proteins for providing metal stress tolerance in green microalgae. New Biotechnol. 2014, 31, S141.
- 99.
Wang, J.; Song, L.; Gong, X.; et al. Functions of Jasmonic Acid in Plant Regulation and Response to Abiotic Stress. Int. J. Mol. Sci. 2020, 21, 1446.
- 100.
Shinshi, H. Ethylene-regulated transcription and crosstalk with jasmonic acid. Plant Sci. 2008, 175, 18–23.
- 101.
Li, G.; Xu, W.; Kronzucker, H.J.; et al. Ethylene is critical to the maintenance of primary root growth and Fe homeostasis under Fe stress in Arabidopsis. J. Exp. Bot. 2015, 66, 2041–2054.
- 102.
Zhang, M.; Zhao, X.; Ren, X. Research Progress on the Mechanisms of Algal-Microorganism Symbiosis in Enhancing Large-Scale Lipid Production. J. Agric. Food Chem. 2025, 73, 6345–6360.
- 103.
Ran, Y.; Sun, D.; Liu, X.; et al. Chlorella pyrenoidosa as a potential bioremediator: Its tolerance and molecular responses to cadmium and lead. Sci. Total Environ. 2024, 912, 168712.
- 104.
Peng, H.; De-Bashan, L.E.; Higgins, B.T. Azospirillum brasilense reduces oxidative stress in the green microalgae Chlorella sorokiniana under different stressors. J. Biotechnol. 2021, 325, 179–185.
- 105.
Piotrowska-Niczyporuk, A.; Bajguz, A.; Zambrzycka, E.; et al. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol. Biochem. PPB 2012, 52, 52–65.
- 106.
Piotrowska-Niczyporuk, A.; Bonda-Ostaszewska, E.; Bajguz, A. Mitigating Effect of Trans-Zeatin on Cadmium Toxicity in Desmodesmus armatus. Cells 2024, 13, 686.
- 107.
Ibuot, A.; Dean, A.P.; Mcintosh, O.A.; et al. Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains. Algal Res. 2017, 24, 89–96.
- 108.
Lin, Y.; Dai, Y.; Xu, W.; et al. The Growth, Lipid Accumulation and Fatty Acid Profile Analysis by Abscisic Acid and Indol-3-Acetic Acid Induced in Chlorella sp. FACHB-8. Int. J. Mol. Sci. 2022, 23, 4064.
- 109.
Yuan, H.; Zhang, X.; Jiang, Z.; et al. Analyzing the effect of pH on microalgae adhesion by identifying the dominant interaction between cell and surface. Colloids Surf. B Biointerfaces 2019, 177, 479–486.
- 110.
Abinandan, S.; Venkateswarlu, K.; Megharaj, M. Phenotypic changes in microalgae at acidic pH mediate their tolerance to higher concentrations of transition metals. Curr. Res. Microb. Sci. 2021, 2, 100081.
- 111.
Chen, F.; Chen, Y.; Pan, K.; et al. Species-specific deformation of microalgae in the presence of microplastics. Environ. Chem. Lett. 2024, 22, 953–959.
- 112.
Ismaiel, M.M.S.; Piercey-Normore, M.D.; Rampitsch, C. Biochemical and proteomic response of the freshwater green alga Pseudochlorella pringsheimii to iron and salinity stressors. BMC Plant Biol. 2024, 24, 42.