2511002143
  • Open Access
  • Review

Design and Scientific Prospects of the POLAR-2 Mission

  • Merlin Kole 1,*,   
  • Nicolas De Angelis 2,†,   
  • Jiang He 3,†,   
  • Hongbang Liu 4,†,   
  • Jianchao Sun 3,†,   
  • Fei Xie 4,†,   
  • Jimmy Zaid 1,†

Received: 30 Sep 2025 | Revised: 02 Nov 2025 | Accepted: 03 Nov 2025 | Published: 04 Dec 2025

Abstract

The POLAR-2 mission consists of 3 instruments designed with the combined aim of producing a deeper understanding of Gamma-Ray Bursts. The mission will provide new insights regarding the geometries and emission mechanisms of the astrophysical jets which characterize these phenomena. To achieve this, POLAR-2 relies on polarization measurements and, for the first time will provide these using 2 separate polarimeter detectors. The first of these is a payload optimized to perform Compton polarimetry measurements in the 40–1000 keV energy range using a combination of plastic scintillators and silicon photo-multipliers. The development of this payload, the design of which is based on lessons learned from the POLAR mission, included optimization of plastic scintillator materials, their geometries and their wrapping. In addition, its development included detailed characterization, space qualification and radiation damage and mitigation strategies for the large number of silicon photo-multipliers included in the design. We will present these along with an overview of the readout electronics. These electronics were developed with flexibility in mind, as well as low cost and low power consumption. As such, its design is of interest beyond this polarimeter and is also used on the spectrometer instrument of POLAR-2 where it is used to read out an array of GAGG scintillators. This readout, in combination with a coded mask, allows this secondary instrument to provide detailed spectral measurements along with localization measurements of the observed gamma-ray bursts. The final instrument used in the mission aims to use gas-based detectors to perform polarization measurements in the keV energy region. The novelty of this design lies in its optimization for wide-field observations. In addition, it is specifically designed for transient source monitoring, capable of handling high fluxes, and its performance remains largely insensitive to rapid flux variations. The combination of the three instruments will allow to perform detailed spectral, localization and polarization measurements of these transient phenomena together for the first time. This paper will provide an overview of the technologies employed in the mission along with detailed predictions on its capabilities after its launch which is currently foreseen in 2027.

References 

  • 1.

    Klebesadel, R.W.; Strong, I.B.; Olson, R.A. Observations of Gamma-Ray Bursts of Cosmic Origin. Astrophys. J. 1973,
    182, L85.

  • 2.

    Bowyer, S.; Byram, E.T.; Chubb, T.A.; et al. Lunar Occultation of X-ray Emission from the Crab Nebula. Science 1964,
    146, 912–917.

  • 3.

    Tananbaum, H.; Clark, G.W.; Garmire, F.R. Observation of X-ray Pulsations from the Crab Nebula Pulsar NP 0532.
    Astrophys. J. 1971, 170, L99–L102.

  • 4.

    Weisskopf, M.C.; Cohen, G.G.; Kestenbaum, H.L.; et al. Measurement of the X-ray polarization of the Crab nebula.
    Astrophys. J. 1976, 208, L125–L128.

  • 5.

    Bernard, D.; Chattopadhyay, T.; Kislat, F.; et al. Handbook of X-ray and Gamma-ray Astrophysics; Bambi, C., Santangelo,
    A., Eds.; Springer Nature: Heidelberg, Germany, 2022; p. 33.

  • 6.

    Feng, H.; Jiang, W.; Minuti, M.; et al. PolarLight: A CubeSat X-ray polarimeter based on the gas pixel detector. Exp. Astron.
    2019, 47, 225–243.

  • 7.

    Weisskopf, M.C.; Soffitta, P.; Baldini, L.; et al. Imaging X-ray Polarimetry Explorer: prelaunch. J. Astron. Telesc. Instrum.
    Syst. 2022, 8, 026002.

  • 8.

    Soffitta, P. The Imaging X-ray Polarimetry Explorer (IXPE) and New Directions for the Future. Instruments 2024, 8, 25.

  • 9.

    Nava, L.; Ghirlanda, G.; Ghisellini, G.; et al. Spectral properties of 438 GRBs detected by Fermi/GBM. Astron. Astrophys.
    2011, 530, A21.

  • 10.

    McConnell, M.L. High energy polarimetry of prompt GRB emission. New Astron. Rev. 2017, 76, 1–21.

  • 11.

    Gill, R.; Kole, M.; Granot, J. GRB Polarization: A Unique Probe of GRB Physics. Galaxies 2021, 9, 82.

  • 12.

    Yonetoku, D.; Murakami, T.; Gunji, S.; et al. Gamma-Ray Burst Polarimeter (GAP) aboard the Small Solar Power Sail
    Demonstrator IKAROS. Publ. Astron. Soc. JPN. 2021, 63, 625–638.

  • 13.

    Produit, N.; Bao, T.; Batsch, T.; et al. Design and construction of the POLAR detector. Nucl. Instrum. Methods Phys. Res.
    Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 877, 259–268.

  • 14.

    Kole, M.; De Angelis, N.; Berlato, F.; et al. The POLAR gamma-ray burst polarization catalog. Astron. Astrophys. 2020,
    644, A124.

  • 15.

    Kouveliotou, C.; Meegan, C.A.; Fishman, G.J.; et al. Identification of Two Classes of Gamma-Ray Bursts. Astrophys. J.
    Lett. 1993, 413, L101–L104.

  • 16.

    Gehrels, N.; Sarazin, C.L.; O’Brien, P.T.; et al. A short γ-ray burst apparently associated with an elliptical galaxy at redshift
    z = 0.225. Nature 2005, 437, 851–854.

  • 17.

    Barthelmy, S.D.; Chincarini, G.; Burrows, D.N.; et al. An origin for short γ-ray bursts unassociated with current star
    formation. Nature 2005, 438, 994–996.

  • 18.

    Woosley, S.E. Gamma-Ray Bursts from Stellar Mass Accretion Disks around Black Holes. Astrophys. J. 1993, 405, 273.

  • 19.

    Fruchter, A.S.; Levan, A.J.; Strolger, L.; et al. Long γ-ray bursts and core-collapse supernovae have different environments.
    Nature 2006, 441, 463–468.

  • 20.

    Galama, T.J.; Vreeswijk, P.M.; van Paradijs, J.; et al. An unusual supernova in the error box of the γ-ray burst of 25 April
    1998. Nature 1998, 395, 670–672.

  • 21.

    Hjorth, J.; Sollerman, J.; Møller, P.; et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003.
    Nature 2003, 423, 847–850.

  • 22.

    Abbott, B.P.; Abbott, R.; Abbott, T.D.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star
    Inspiral. Phys. Rev. Lett. 2017, 119, 161101.

  • 23.

    Abbott, B.P.; Abbott, R.; Abbott, T.D.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger:
    GW170817 and GRB 170817A. Astrophys. J. Lett. 2017, 848, L13.

  • 24.

    Frail, D.A.; Waxman, E.; Kulkarni, S.R. The radio afterglow from the γ-ray burst of 8 May 1997 (GRB 970508). Nature
    1997, 389, 261–263.

  • 25.

    Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; et al. Teraelectronvolt emission from the γ-ray burst GRB 190114C. Nature
    2019, 575, 455–458.

  • 26.

    Abdalla, H.; Abramowski, A.; Aharonian, F.; et al. A very-high-energy component deep in the γ-ray burst afterglow. Nature
    2019, 575, 464–467.

  • 27.

    Costa, E.; Frontera, F.; Heise, J.; et al. Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997.
    Nature 1997, 387, 783–785.

  • 28.

    van Paradijs, J.; Groot, P.J.; Galama, T.; et al. Transient optical emission from the error box of the gamma-ray burst of 28
    February 1997 (GRB 970228). Nature 1997, 386, 686–689.

  • 29.

    Wu, S.; P´erez-Garc´ıa, I.; Castro-Tirado, A.; et al. Early Optical Follow-Up Observations of Einstein Probe X-ray Transients
    During the First Year. Galaxies 2025, 13, 62.

  • 30.

    Salafia, O.S. The Structure of Gamma-Ray Burst Jets. Galaxies 2022, 10, 93.

  • 31.

    Paczynski, B. Gamma-ray bursts: The fireball model. Acta Astronomica 1993, 43, 1–22.

  • 32.

    Band, D.; Matteson, J.; Ford, L.; et al. BATSE Observations of Gamma-Ray Burst Spectra. I. Spectral Diversity. Astrophys.
    J. 1993, 413, 281.

  • 33.

    Rees, M.J.; M´esz´aros, P. Relativistic fireballs—Energy conversion and time-scales. Mon. Not. R. Astron. Soc. 1992,
    258, 41P–43P.

  • 34.

    Tavani, M. Synchrotron shock model for gamma-ray bursts. Astrophys. J. 1996, 466, 768–778.

  • 35.

    Meszaros, P.; Rees, M.J. Steep Slopes and Preferred Breaks in Gamma-Ray Burst Spectra: The Role of Photospheres and
    Comptonization. Astrophys. J. 2000, 530, 292–298.

  • 36.

    Lazzati, D.; Ghisellini, G.; Celotti, A.; et al. Compton-dragged Gamma-ray Bursts associated with Supernovae. Astrophys.
    J. 2000, 529, L17–L20.

  • 37.

    Lundman, C.; Vurm, I.; Beloborodov, A.M. Polarization of Gamma-Ray Bursts in the Dissipative Photosphere Model.
    Astrophys. J. 2018, 856, 145.

  • 38.

    Lazzati, D.; Rossi, E.; Ghisellini, G.; et al. Compton drag as a mechanism for very high linear polarization in gamma-ray
    bursts. MNRAS 2004, 347, L1–L5.

  • 39.

    Gill, R.; Granot, J.; Kumar, P. Linear polarization in gamma-ray burst prompt emission. MNRAS 2020, 491, 3343–3373.

  • 40.

    Granot, J.; K¨onigl, A. Linear Polarization in Gamma-Ray Bursts: The Case for an Ordered Magnetic Field. Astrophys. J.
    2003, 594, L83.

  • 41.

    Coburn, W.; Boggs, S.E. Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002. Nature 2003,
    423, 415–417.

  • 42.

    Rutledge, R.E.; Fox, D.B. Re-analysis of polarization in the γ-ray flux of GRB 021206. Mon. Not. R. Astron. Soc. 2004,
    350, 1288–1300.

  • 43.

    Wigger, C.; Hajdas, W.; Arzner, K.; et al. Gamma-Ray Burst Polarization: Limits from RHESSI Measurements. Astrophys.
    J. 2004, 613, 1088.

  • 44.

    Vadawale, S.V.; Chattopadhyay, T.; Rao, A.R.; et al. Hard X-ray polarimetry with Astrosat-CZTI. Astron. Astrophys. 2015,
    578, A73.

  • 45.

    Yonetoku, D.; Murakami, T.; Gunji, S.;et al. Gamma-Ray Burst Polarimeter (GAP) aboard the Small Solar Power Sail
    Demonstrator IKAROS. Publ. Astron. Soc. JPN. 2011, 63, 625–638.

  • 46.

    Chattopadhyay, T.; Vadawale, S.V.; Aarthy, E.; et al. Prompt emission polarimetry of Gamma Ray Bursts with ASTROSAT
    CZT-Imager. Astrophys. J. 2017, 884, 123.

  • 47.

    Chattopadhyay, T.; Gupta, S.; Iyyani, S.; et al. Hard X-ray Polarization Catalog for a Five-year Sample of Gamma-Ray
    Bursts Using AstroSat CZT Imager. Astrophys. J. 2022, 936, 12.

  • 48.

    Lan, M.X.; Dai, Z.G. Time-resolved and Energy-resolved Polarizations of GRB Prompt Emission. Astrophys. J. 2020,
    892, 141.

  • 49.

    Gill, R.; Granot, J. Temporal Evolution of Prompt GRB Polarization. Mon. Not. R. Astron. Soc. 2021, 504, 1939–1953.

  • 50.

    Burgess, J.M.; Kole, M.; Berlato, F.; et al. Time-resolved GRB polarization with POLAR and GBM. Simultaneous spectral
    and polarization analysis with synchrotron emission. Astron. Astrophys. 2019, 627, A105.

  • 51.

    Gupta, R.; Pandey, S.B.; Gupta, S.; et al. A Detailed Time-resolved and Energy-resolved Spectro-polarimetric Study of
    Bright Gamma-Ray Bursts Detected by AstroSat CZTI in Its First Year of Operation. Astrophys. J. 2024, 972, 166.

  • 52.

    De Angelis, N. Development of the Next Generation Space-based Compton Polarimeter and Energy Resolved Polarization
    Analysis of Gamma-Ray Bursts Prompt Emission. Ph.D. Thesis, Departement de Physique Nucleaire et Corpusculaire,
    Universit´e de Gen`eve: Geneva, Switzerland, 2023.

  • 53.

    De Angelis, N.; Burgess, J.M.; Cadoux, F.; et al. Energy-dependent polarization of Gamma-Ray Bursts’ prompt emission
    with the POLAR and POLAR-2 instruments. arXiv 2023, arXiv:2309.00507.

  • 54.

    Rossi, E.; Lazzati, D.; Rees, M.J. Afterglow lightcurves, viewing angle and the jet structure of gamma-ray bursts. Mon. Not.
    Roy. Astron. Soc. 2002, 332, 945–950.

  • 55.

    Kole, M.; Iacovelli, F.; Mancarella, M.; et al. Adding gamma-ray polarimetry to the multi-messenger era–Prospects of joint
    gravitational-wave and gamma-ray polarimetry studies. Astron. Astrophys. 2023, 669, A77.

  • 56.

    Muleri, F. On the operation of X-ray polarimeters with a large field of view. Astrophys. J. 2014, 782, 28.

  • 57.

    Feng, Z.K.; Liu, H.B.; Yi, D.F.; et al. Polarization Reconstruction Study of Wide Field-of-view Photoelectric Polarimeter
    for POLAR-2/LPD. Astrophys. J. Suppl. Ser. 2025, 276, 30.

  • 58.

    Weisskopf, M.C.; Elsner, R.F.; O’Dell, S.L. On understanding the figures of merit for detection and measurement of X-ray
    polarization. In Proceedings of the Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, San Diego, CA,
    USA, 27 June–2 July 2010 , Volume 7732, p. 77320E.

  • 59.

    Kole, M. Scintillator Length Optimization Studies-POLAR-2 Technical Note. Intern. Doc. Available Upon Req. 2020.

  • 60.

    De Angelis, N.; Cadoux, F.; Husi, C.; et al. Optimizing the light output of a plastic scintillator and SiPM based detector
    through optical characterization and simulation: A case study for POLAR-2. J. Instrum. 2025, 20, P02010.

  • 61.

    De Angelis, N.; Kole, M.; Cadoux, F.; et al. Temperature dependence of radiation damage annealing of Silicon Photomultipliers.
    Nucl. Instrum. Meth. A 2023, 1048, 167934.

  • 62.

    Kole, M.; De Angelis, N.; Produit, N., et al. Design and performance of a universal SiPM readout system for X- and
    gamma-ray missions. Nucl. Instrum. Meth. A 2025, 1080, 170782.

  • 63.

    Huang, Y.; Shi, D.; Zhang, X.; et al. The GECAM Real-time Burst Alert System. Res. Astron. Astrophys. 2024, 24, 104004.

  • 64.

    Mianowski, S.; De Angelis, N.; Hulsman, J.; et al. Proton irradiation of SiPM arrays for POLAR-2. Exp. Astron. 2023,
    55, 343–371.

  • 65.

    Mianowski, S.; De Angelis, N.; Brylew, K.; et al. Proton irradiation of plastic scintillator bars for POLAR-2. Exp. Astron.
    2023. 56, 355–370.

  • 66.

    De Angelis, N.; Azzarello, P.; Cadoux, F.; et al. Gamma-Ray Burst Polarimetry with the POLAR and POLAR-2 missions
    2025, 13625, 1362502.

  • 67.

    Kole, M.; De Angelis, N.; Bacelj, A.; et al. Response of the first POLAR-2 prototype to polarized beams. J. Instrum. 2024,
    19, P08002.

  • 68.

    An, M.; Wu, Y.; Li, Y.; et al. Design and study of a prototype pixel ASIC Topmetal for precision current measurement in
    high-energy physics experiments. J. Instrum. 2025, 20, P07009.

  • 69.

    Feng, H.B.; Liu, H.B.; Xie, Y.J.; et al. Spectral and polarimetric characterization of the Gas Microchannel plate Pixel
    Detector. J. Instrum. 2023, 18, P08012.

  • 70.

    Feng, H.B.; Liu, H.B.; Wang, D.; et al. Gas microchannel plate-pixel detector for X-ray polarimetry. Nucl. Sci. Tech. 2024,
    35, 39.

  • 71.

    Yi, D.; Liu, Q.; Liu, H.; et al. Effectiveness Study of Calibration and Correction Algorithms on the Prototype of the
    POLAR-2/LPD Detector. arXiv 2024, arXiv:astro-ph.IM/2407.14243.

  • 72.

    Feng, H.; Liu, H.; Liu, S.; et al. Charging-up effects for Gas Microchannel Plate detector. Nucl. Instrum. Methods Phys. Res.
    A 2023, 1055, 168499.

  • 73.

    Li, Z.; Feng, H.; Huang, X.; et al. Preliminary test of topmetal-II- sensor for X-ray polarization measurements. Nucl.
    Instrum. Methods Phys. Res. 2021, 1008, 165430.

  • 74.

    Fan, Z.; Liu, H.; Feng, H.; et al. Front-End Electronics of CXPD for Measuring Transient X-ray Sources. IEEE Trans. Nucl.
    Sci. 2023, 70, 1507–1513.

  • 75.

    Zhou, Z.; Zhou, S.Q.; Wang, D.; et al. Low-noise and low-power pixel sensor chip for gas pixel detectors. Nucl. Sci. Tech.
    2024, 35, 58.

  • 76.

    Agostinelli, S.; Allison, J.; Amako, K.; et al. Geant4—a simulation toolkit. Nucl. Instrum. Meth. A 2003, 506, 250–303.

  • 77.

    von Kienlin, A.; Meegan, C.A.; Paciesas, W.S.; et al. The Fourth Fermi-GBM Gamma-Ray Burst Catalog: A Decade of
    Data. Astrophys. J. 2020, 893, 46.

  • 78.

    Vianello, G.; Lauer, R.J.; Younk, P.; et al. The Multi-Mission Maximum Likelihood framework (3ML). arXiv 2015,
    arXiv:1507.08343.

  • 79.

    GRB 170114A: POLAR and Fermi GBM detection. Available online: https://gcn.gsfc.nasa.gov/gcn3/20461.gcn3 (accessed
    on 30 September 2025).

  • 80.

    Wang, X.; Lan, M.X.; Tang, Q.W.; et al. Origin of the Twice-90° Rotations of the Polarization Angle in GRB 170114A and
    GRB 160821A. Astrophys. J. 2024, 972, 15.

  • 81.

    Cheng, K.; Zhao, X.; Mao, J.; et al. The polarization-angle flip in GRB prompt emission. Astron. Astrophys. 2024,
    687, A128.

  • 82.

    Feng, Z.K.; Liu, H.B.; Xie, F.; et al. In-orbit Background and Sky Survey Simulation Study of POLAR-2/LPD. Astrophys. J.
    2024, 960, 87.

Share this article:
How to Cite
Kole, M.; De Angelis, N.; He, J.; Liu, H.; Sun, J.; Xie, F.; Zaid, J. Design and Scientific Prospects of the POLAR-2 Mission. Innovations in Space Research Technology 2026, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.