2511002173
  • Open Access
  • Review

Cosmic Ray Space Experiments †

  • Martin Pohl

Received: 24 Sep 2025 | Revised: 25 Oct 2025 | Accepted: 05 Nov 2025 | Published: 04 Dec 2025

Abstract

This article describes current experiments in space which measure charged cosmic ray particles in the range from 10 GV to 105 GV of magnetic rigidity p/(Ze). In this energy range, cosmic rays are expected to originate from sources in the Milky Way and be confined to our galaxy. Technologies and methods to study the spectra of electrons, positrons and nuclei are described, as well as the analysis of antimatter components. Figures of merit for instruments currently in orbit are discussed.

References 

  • 1.

    Van Allen, J.A.; Tatel, H.E. The cosmic-ray counting rate of a single Geiger counter from ground level to 161 kilometers
    altitude. Phys. Rev. 1948, 73, 245–251.

  • 2.

    Grigorov, N.L.; Nesterov, V.E.; Rapoport, I.D.; et al. Investigation of Energy Spectrum of Primary Cosmic Particles with
    High and Super-High Energies of Space Station PROTON. Yad. Fiz. 1970, 11, 1058–1069.

  • 3.

    Grigorov, N.L.; Mamontova, N.A.; Rapoport, I.D.; et al. Energy Spectrum of Primary Cosmic Rays in the 1011–1015 eV
    Energy Range According to the Data of Proton-4 Measurements. In Proceedings of the 12th International Cosmic Ray
    Conference, Hobart, TAS, Australia, 16–25 August 1971; Volume 5, pp. 1746–1751.

  • 4.

    Grigorov, N.L.; Mamontova, N.A.; Rapoport, I.D.; et al. On Irregularity in the Primary Cosmic Ray Spectrum in the 1012
    eV Energy Range. In Proceedings of the 12th International Cosmic Ray Conference, Hobart, TAS, Australia, 16–25 August
    1971; Volume 5, pp. 1752–1759.

  • 5.

    Grigorov, N.L.; Rapoport, I.D.; Savenko, I.A.; et al. Energy Spectrum of Cosmic Ray α-Particles in 5 × 1010–1012
    eV/Nucleon Energy Range. In Proceedings of the 12th International Cosmic Ray Conference, Hobart, TAS, Australia,
    16–25 August 1971; Volume 5, pp. 1760–1768.

  • 6.

    Grigorov, N.L.; Tolstaya, E.D. The spectrum of cosmic-ray particles and their origin. JETP 2004, 98, 643–650.

  • 7.

    Grigorov, N.L.; Rapoport, I.D.; Savenko, I.A.; et al. Some problems and perspectives in cosmic-ray studies. Space Sci. Rev.
    1966, 5, 167–209.

  • 8.

    Grigorov, N.L.; Rapoport, I.D.; Savenko, I.A.; et al. Some problems and perspectives in cosmic-ray studies. Space Sci. Rev.
    1966, 5, 167–209.

  • 9.

    Atkin, E.; Bulatov, V.; Dorokhov, V.; et al. The NUCLEON space experiment for direct high energy cosmic rays investigation
    in TeV–PeV energy range. Nucl. Instrum. Meth. A 2015, 770, 189–196.

  • 10.

    Spillantini, P. CR from Space Based Observatories: History, Results and Perspectives of the PAMELA Mission. In
    Proceedings of the 9th Baikal Summer School on Physics of Elementary Particles and Astrophysics, Bol’shie Koty, Russia,
    23–30 July 2009; pp. 213–234.

  • 11.

    Adriani, O.; Bonechi, L.; Bongi, M.; et al. The Magnetic Spectrometer of the PAMELA Experiment: On-Ground Test of the
    Flight-Model. In Proceedings of the 20th ICRC, Pune, Pune, India, 3–10 August 2005; Volume 3, pp. 317–320.

  • 12.

    Pamela Collaboration, Adriani, O.; Barbarino, G.C.; et al. Ten years of PAMELA in space. Riv. Nuovo Cim. 2017,
    40, 473–522.

  • 13.

    Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; et al. An anomalous positron abundance in cosmic rays with energies
    1.5–100 GeV. Nature 2009, 458, 607–609.

  • 14.

    Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; et al. Cosmic-ray positron energy spectrum measured by PAMELA. Phys.
    Rev. Lett. 2013, 111, 081102.

  • 15.

    Bonechi, L.; Adriani, O.; Bongi, M.; et al. Status of the PAMELA silicon tracker. Nucl. Instrum. Meth. A 2007, 570, 281–285.

  • 16.

    Bindi, V.; Paniccia, M.; Pohl, M. Cosmic Ray Physics: An Introduction to the Cosmic Laboratory; CRC Press: Boca Raton,
    2023.

  • 17.

    Aguilar, M.; Alcaraz, J.; Allaby, J.; et al. The Alpha Magnetic Spectrometer (AMS) on the International Space Station: Part
    I—results from the test flight on the space shuttle. Phys. Rep. 2002, 366, 331–405.

  • 18.

    Yamamoto, A.; Mitchell, J.W.; Yoshimura, K.; et al. Search for cosmic-ray antiproton origins and for cosmological
    antimatter with BESS. Adv. Space Res. 2013, 51, 227–233.

  • 19.

    Abe, K.; Fuke, H.; Haino, S.; et al. The results from BESS-Polar experiment. Adv. Space Res. 2017, 60, 806–814.

  • 20.

    Aguilar, M.; Cavasonza, L.A.; Ambrosi, G.; et al. The Alpha Magnetic Spectrometer (AMS) on the International Space
    Station: Part II – Results from the first seven years. Phys. Rep. 2021, 894, 1–116.

  • 21.

    Chang, J.; Ambrosi, G.; An Q.; et al. The DArk Matter Particle Explorer mission. Astrop. Phys. 2017, 95, 6–24.

  • 22.

    Torii, S.; Marrocchesi, P.S. The CALorimetric Electron Telescope (CALET) on the International Space Station. Adv. Space
    Res. 2019, 64, 2531–2537.

  • 23.

    Asaoka, Y.; Adriani, O.; Akaike, Y.; et al. The CALorimetric Electron Telescope (CALET) on the International Space
    Station: Results from the first two years on orbit. J. Phys.: Conf. Ser. 2019, 1181, 012003.

  • 24.

    Asaoka, Y.; Akaike, Y.; Komiya, Y.; et al. Energy calibration of CALET onboard the International Space Station. Astropart.
    Phys. 2017, 91, 1–10.

  • 25.

    Adriani, O.; Akaike, Y.; Asano, K.; et al. Direct Measurement of the Spectral Structure of Cosmic-Ray Electrons +
    Positrons in the TeV Region with CALET on the International Space Station. Phys. Rev. Lett. 2023, 131, 191001.

  • 26.

    Seo, E.S.; Anderson, T.; Angelaszek, D.; et al. Cosmic Ray Energetics And Mass for the International Space Station
    (ISS-CREAM). Adv. Space Res. 2014, 53, 1451–1455.

  • 27.

    Seo, E.S.; Amare, Y.; Angelaszek, D. Cosmic Ray Energetics And Mass for the International Space Station (ISS-CREAM).
    In Proceedings of the 36th International Cosmic Ray Conference—ICRC2019, Madison, WI, USA, 24 July–1 August 2019.

  • 28.

    Choi, G.H.; Seo, E.S.; Aggarwal, S.; et al. Measurement of High-Energy Cosmic-Ray Proton Spectrum from the ISSCREAM
    Experiment. Astrophys. J. 2022, 940, 107.

  • 29.

    Sun, H.; Alemanno, F.; Altomare, C.; et al. Measurement of Heavy Nuclei Beyond Iron in Cosmic Rays with the DAMPE
    Experiment. In Proceedings of the 38th International Cosmic Ray Conference, Nagoya, Japan, 26 July–3 August 2023.

  • 30.

    Alemanno, F.; Altomare, C.; An Q.; et al. Measurement of the cosmic p + He energy spectrum from 50 GeV to 0.5 PeV
    with the DAMPE space mission. Phys. Rev. D 2024, 109, L121101.

  • 31.

    Aguilar, M.; Aisa, D.; Alvino, A.; et al. Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha
    Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2014, 113, 121102.

  • 32.

    Fan, R.R.; Zhang, F.; Peng, W.X.; et al. The silicon matrix for the prototype for the Dark Matter Particle Explorer. arXiv
    2024, arXiv:physics.ins-det/1403.1679.

  • 33.

    Lafferty, G.D.; Wyatt, T.R. Where to stick your data points: The treatment of measurements within wide bins. Nucl. Instrum.
    Meth. A 1995, 355, 541–547.

  • 34.

    Berdugo, J.; Choutko, V.; Delgado, C.; et al. Determination of the rigidity scale of the Alpha Magnetic Spectrometer. Nucl.
    Instrum. Meth. A 2017, 869, 10–14.

  • 35.

    Adloff, C.; Basara, L.; Bigongiari, G.; et al. The AMS-02 lead-scintillating fibres electromagnetic calorimeter. Nucl. Instrum.
    Meth. A 2013, 714, 147–154.

  • 36.

    Kounine, A.; Weng, Z.; Xu, W.; et al. Precision measurement of 0.5 GeV–3 TeV electrons and positrons using the AMS
    electromagnetic calorimeter. Nucl. Instrum. Meth. A 2017, 869, 110–117.

  • 37.

    Adriani, O.; Akaike, Y.; Asano, K.; et al. Direct measurement of the cosmic-ray proton spectrum from 50 GeV to 10 TeV
    with the Calorimetric Electron Telescope on the International Space Station. Phys. Rev. Lett. 2019, 122, 181102.

  • 38.

    Adriani, O.; Akaike, Y.; Asano, K.; et al. Direct measurement of the cosmic-ray carbon and oxygen spectra from 10 GeV/n to
    2.2 TeV/n with the Calorimetric Electron Telescope on the International Space Station. Phys. Rev. Lett. 2020, 125, 251102.

  • 39.

    Adriani, O.; Akaike, Y.; Asano, K.; et al. Measurement of the iron spectrum in cosmic rays from 10 GeV/n to 2.0TeV/n
    with the Calorimetric Electron Telescope on the International Space Station. Phys. Rev. Lett. 2021, 126, 241101.

  • 40.

    Zang, J.; Yue, C.; Li, X. Measurement of Absolute Energy Scale of ECAL of DAMPE with Geomagnetic Rigidity Cutoff.
    In Proceedings of the 35th International Cosmic Ray Conference—ICRC2017, Bexco, Korea, 10–20 July 2017.

  • 41.

    Alemanno, F.; An Q.; Azzarello, P.; et al. Measurement of the cosmic ray helium spectrum from 70 GeV to 80 TeV with the
    DAMPE space mission. Phys. Rev. Lett. 2021, 126, 201102.

  • 42.

    Aguilar, M.; Aisa, D.; Alpat, B.; et al. Precision Measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV
    to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 2015, 115, 211101.

  • 43.

    Yan, Q.; Choutko, V.; Oliva, A.; et al. Measurements of nuclear interaction cross sections with the Alpha Magnetic
    Spectrometer on the International Space Station. Nucl. Phys. A 2020, 996, 121712.

  • 44.

    Aguilar, M.; Cavasonza, L.A.; Allen, M.S.; et al. Properties of Iron primary cosmic rays: Results from the Alpha Magnetic
    Spectrometer. Phys. Rev. Lett. 2021, 126, 0411104.

  • 45.

    Alemanno, F.; An Q.; Azzarello, P.; et al. Hadronic cross section measurements with the DAMPE space mission using 20
    GeV–10 TeV cosmic-ray protons and 4He. Phys. Rev. D 2025, 111, 012002.

  • 46.

    van Es, J.; Pauw, A.; van Donk, G.; et al. AMS02 Tracker Thermal Control Cooling System Commissioning and Operational
    Results. In Proceedings of the 43rd International Conference on Environmental Systems, Vail, CO, USA, 14–18 July 2013.

  • 47.

    Ambrosi, G. The Silicon Tracker L0 Upgrade of the AMS-02 experiment on the ISS. In Proceedings of the Advances in
    Space AstroParticle Physics (ASAPP 2025), Lisbon, Portugal, 12–16 May 2025.

  • 48.

    Zhang, S.N.; Adriani, O.; Albergo, S.; et al. The High Energy Cosmic-Radiation Detection (HERD) Facility Onboard
    China’s Space Station. In Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, Proceedings of the
    SPIE Astronomical Telescopes + Instrumentation Conference, Montreal, QC, Canada, 22–26 June 2014; Takahashi, T., den
    Herder, J.-W.A., Bautz, M., Eds.; SPIE: Bellingham, WA, USA, 2014; Volume 9144, pp. 293–301.

  • 49.

    Kyratzis, D.; HERD collaboration. Overview of the HERD space mission. Phys. Scr. 2022, 97, 054010.

  • 50.

    Cagnoli, I.; Kyratzis, D.; Serini, D.. HERD space mission: Probing the Galactic Cosmic Ray frontier. Nucl. Instrum. Meth.
    A 2024, 1068, 169788.

  • 51.

    Adriani, O.; Albergo, S.; Auditore, L.; et al. The CALOCUBE project for a space based cosmic ray experiment: design,
    construction, and first performance of a high granularity calorimeter prototype. J. Inst. 2019, 14, P11004.

  • 52.

    Schae, S.; Atanasyan, A.; Berdugo, J.; et al. AMS-100: The next generation magnetic spectrometer in space—An international
    science platform for physics and astrophysics at Lagrange point 2. Nucl. Instrum. Meth. A 2019, 944, 162561.

  • 53.

    Battiston, R.; Bertucci, B.; Adriani, O.; et al. High precision particle astrophysics as a new window on the universe with an
    Antimatter Large Acceptance Detector In Orbit (ALADInO). Exper. Astron. 2021, 51, 1299–1330.

  • 54.

    Chung, C.; Backes, T.; Dittmar, C.; et al. The development of SiPM-based fast time-of-flight detector for the AMS-100
    experiment in space. Instruments 2022, 6, 14.

  • 55.

    Adriani, O.; Altomare, C.; Ambrosi, G.; et al. Design of an Antimatter Large Acceptance Detector In Orbit (ALADInO).
    Instruments 2022, 6, 19.

Share this article:
How to Cite
Pohl, M. Cosmic Ray Space Experiments †. Innovations in Space Research Technology 2026, 1 (1), 1.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.