2601002733
  • Open Access
  • Review

Wireless Localization Using Deep Learning: A Survey

  • Hongtao Xia 1,   
  • Matthew Andrews 2,   
  • Andrea Conti 3,   
  • Victor Lawrence 1,   
  • Moe Z. Win 4,   
  • Yu-Dong Yao 1,*

Received: 07 Aug 2025 | Revised: 01 Dec 2025 | Accepted: 04 Jan 2026 | Published: 20 Jan 2026

Abstract

The demand of localization services continuously rises with the advancing and developing of mobile and Internet of Things (IoT) devices in the last decade. Localization based on various wireless standards have been extensively studied to provide services in different applications. With the emergence of deep learning (DL) algorithms, many different DL models or architectures are utilized in localization tasks to increase the accuracy and robustness over conventional localization methods. However, there is a lack of survey paper that focuses on how different DL-related methodologies are adopted in corresponding localization scenarios. In this paper, we aim at presenting a comprehensive and up-to-date review of DL-based localization methods from the respects of those common wireless standards such as Wi-Fi, cellular, ultra-wideband (UWB) and Bluetooth low energy (BLE). We further highlight those factors that build up end-to-end DL-based methods including the datasets, preprocessing methods, and DL algorithms. We also discuss how DL can potentially address the challenges in terms of localization precision, latency, and data generation.

References 

  • 1.

    Gao, K.; Wang, H.; Lv, H.; et al. Toward 5G NR high-precision indoor positioning via channel frequency response: A new paradigm and dataset generation method. IEEE J. Sel. Areas Commun. 2022, 40, 2233–2247.

  • 2.

    Klus, R.; Klus, L.; Talvitie, J.; et al. Transfer learning for convolutional indoor positioning systems. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, 29 November–2 December 2021.

  • 3.

    Yapar, C¸ .; Levie, R.; Kutyniok, G.; et al. Real-time outdoor localization using radio maps: A deep learning approach. IEEE Trans. Wirel. Commun. 2023, 22, 9703–9717.

  • 4.

    Song, X.; Fan, X.; Xiang, C.; et al. A novel convolutional neural network based indoor localization framework with WiFi fingerprinting. IEEE Access 2019, 7, 110698–110709.

  • 5.

    Wisanmongkol, J.; Taparugssanagorn, A.; Tran, L.C.; et al. An ensemble approach to deep-learning-based wireless indoor localization. IET Wirel. Sens. Syst. 2022, 12, 33–55.

  • 6.

    Nikonowicz, J.; Mahmood, A.; Ashraf, M.I.; et al. Indoor positioning trends in 5G-advanced: Challenges and solution towards centimeter-level accuracy. arXiv 2022, arXiv:2209.01183.

  • 7.

    Dwivedi, S.; Shreevastav, R.; Munier, F.; et al. Positioning in 5G networks. IEEE Commun. Mag. 2021, 59, 38–44.

  • 8.

    Mogyorosi, F.; Revisnyei, P.; Paˇsi´c, A.; et al. Positioning in 5G and 6G networks—A survey. Sensors 2022, 22, 4757.

  • 9.

    Ayyalasomayajula, R.; Arun, A.; Wu, C.; et al. Deep learning based wireless localization for indoor navigation. In Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, Virtual, 21–25 September 2020.

  • 10.

    Ismail, M.I.M.; Dzyauddin, R.A.; Samsul, S.; et al. An RSSI-based wireless sensor node localisation using trilateration and multilateration methods for outdoor environment. arXiv 2019, arXiv:1912.07801.

  • 11.

    Tian, K.; Song, S.; Xu, W.; et al. Wireless Positioning Using Deep Learning with Data Augmentation Technique. In Proceedings of the IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2021; pp. 1255–1259.

  • 12.

    Chen, H.; Wang, B.; Pei, Y.; et al. A WiFi indoor localization method based on dilated CNN and support vector regression. In Proceedings of the Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 165–170.

  • 13.

    Hoffmann, M.; Bogucka, H. Localization techniques for 5G radio environment maps. In Proceedings of the Cognitive Radio-Oriented Wireless Networks: 14th EAI International Conference, CrownCom 2019, Poznan, Poland, 11–12 June 2019; pp. 232–246.

  • 14.

    Roy, P.; Chowdhury, C.; Ghosh, D.; et al. JUIndoorLoc: A ubiquitous framework for smartphone-based indoor localization subject to context and device heterogeneity. Wirel. Pers. Commun. 2019, 106, 739–762.

  • 15.

    Lu, Y.M.; Sheu, J.P.; Kuo, Y.C. Deep learning for ultra-wideband indoor positioning. In Proceedings of the IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2021; pp. 1260–1266.

  • 16.

    Hoang, M.T.; Yuen, B.; Dong, X.; et al. Recurrent neural networks for accurate RSSI indoor localization. IEEE Internet Things J. 2019, 6, 10639–10651.

  • 17.

    Sonny, A.; Kumar, A.; Cenkeramaddi, L.R. A survey of application of machine learning in wireless indoor positioning systems. arXiv 2024, arXiv:2403.04333.

  • 18.

    Burghal, D.; Ravi, A.T.; Rao, V.; et al. A comprehensive survey of machine learning based localization with wireless signals. arXiv 2020, arXiv:2012.11171.

  • 19.

    Roy, P.; Chowdhury, C. A survey of machine learning techniques for indoor localization and navigation systems. J. Intell. Robot. Syst. 2021, 101, 63.

  • 20.

    Kordi, K.A.; Roslee, M.; Alias, M.Y.; et al. Survey of Indoor Localization Based on Deep Learning. Comput. Mater. Contin. 2024, 79, 3261.

  • 21.

    Feng, X.; Nguyen, K.A.; Luo, Z. A survey of deep learning approaches for WiFi-based indoor positioning. J. Inf. Telecommun. 2022, 6, 163–216.

  • 22.

    Nessa, A.; Adhikari, B.; Hussain, F.; et al. A survey of machine learning for indoor positioning. IEEE Access 2020, 8, 214945–214965.

  • 23.

    Alhomayani, F.; Mahoor, M.H. Deep learning methods for fingerprint-based indoor positioning: A review. J. Locat. Based Serv. 2020, 14, 129–200.

  • 24.

    Ye, Y.X.; Lu, A.N.; You, M.Y.; et al. Wireless localization based on deep learning: state of art and challenges. Math. Probl. Eng. 2020, 2020, 5214920.

  • 25.

    Zafari, F.; Gkelias, A.; Leung, K.K. A survey of indoor localization systems and technologies. IEEE Commun. Surv. Tutorials 2019, 21, 2568–2599.

  • 26.

    Roy, P.; Chowdhury, C.; Kundu, M.; et al. Novel weighted ensemble classifier for smartphone based indoor localization. Expert Syst. Appl. 2021, 164, 113758.

  • 27.

    Torres-Sospedra, J.; Montoliu, R.; Mart´ınez-Us´o, A.; et al. UJIIndoorLoc: A new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, Republic of Korea, 27–30 October 2014; pp. 261–270.

  • 28.

    Wang, Y.; Gao, J.; Li, Z.; et al. Robust and accurate Wi-Fi fingerprint location recognition method based on deep neural network. Appl. Sci. 2020, 10, 321.

  • 29.

    Sun, Q.; He, L.; Meng, F.; et al. Wireless communication indoor positioning method in 5G sub-station using deep neural network and location fingerprint algorithm. Optik 2022, 271, 170159.

  • 30.

    Dou, F.; Lu, J.; Xu, T.; et al. A bisection reinforcement learning approach to 3-D indoor localization. IEEE Internet Things J. 2020, 8, 6519–6535.

  • 31.

    Barsocchi, P.; Crivello, A.; La Rosa, D.; et al. A multisource and multivariate dataset for indoor localization methods based on WLAN and geo-magnetic field fingerprinting. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016.

  • 32.

    Moreira, A.; Silva, I.; Torres-Sospedra, J. The DSI dataset for Wi-Fi fingerprinting using mobile devices. Zenodo 2020. https://doi.org/10.5281/zenodo.3778646.

  • 33.

    Mendoza-Silva, G.M.; Richter, P.; Torres-Sospedra, J.; et al. Long-term WiFi fingerprinting dataset for research on robust indoor positioning. Data 2018, 3, 3.

  • 34.

    King, T.; Kopf, S.; Haenselmann, T.; et al. CRAWDAD dataset mannheim/compass (v. 2008-04-11). Traceset Fingerprintc 2008. https://doi.org/10.15783/c7js3p.

  • 35.

    Richter, P.; Lohan, E.S.; Talvitie, J. WLAN (WiFi) RSS database for fingerprinting positioning. Zenodo 2018. https://doi.org/10.5281/zenodo.1161525.

  • 36.

    Lohan, E. Additional TAU datasets for Wi-Fi fingerprinting-based positioning. Zenodo 2020. https://doi.org/10.5281/zenodo.3819917.

  • 37.

    Lohan, E.; Torres-Sospedra, J.; Richter, P.; et al. Crowdsourced WiFi-fingerprinting database and benchmark software for indoor positioning. Zenodo 2017. https://doi.org/10.5281/zenodo.889798.

  • 38.

    Alhomayani, F. Deep Learning Methods for Fingerprint-Based Indoor and Outdoor Positioning. Ph.D. Thesis, University of Denver, Denver, CO, USA, 2021.

  • 39.

    Aranda, F.J.; Parralejo, F.; A´ lvarez, F.J.; et al.Multi-slot BLE raw database for accurate positioning in mixed indoor/outdoor environments. Data 2020, 5, 67.

  • 40.

    Alhomayani, F.; Mahoor, M.H. OutFin, a multi-device and multi-modal dataset for outdoor localization based on the fingerprinting approach. Sci. Data 2021, 8, 66.

  • 41.

    Nabati, M.; Ghorashi, S.A. A real-time fingerprint-based indoor positioning using deep learning and preceding states. Expert Syst. Appl. 2023, 213, 118889.

  • 42.

    Comiter, M.Z.; Crouse, M.B.; Kung, H. A data-driven approach to localization for high frequency wireless mobile networks. In Proceedings of the GLOBECOM 2017-2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017.

  • 43.

    Koutris, A.; Siozos, T.; Kopsinis, Y.; et al. Deep Learning-Based Indoor Localization Using Multi-View BLE Signal. Sensors 2022, 22, 2759.

  • 44.

    Zhang, Q.; Wang, Y. A 3D mobile positioning method based on deep learning for hospital applications. Eurasip J. Wirel. Commun. Netw. 2020, 2020, 170.

  • 45.

    Liu, L.; Zhao, Q.; Miki, S.; et al. Indoor Fingerprinting Positioning System Using Deep Learning with Data Augmentation. Sensors Mater. 2022, 34, 3047–3061.

  • 46.

    Wu, G.S.; Tseng, P.H. A deep neural network-based indoor positioning method using channel state information. In Proceedings of the International Conference on Computing, Networking and Communications (ICNC), Maui, HI, USA, 5–8 March 2018; pp. 290–294.

  • 47.

    Xiang, C.; Zhang, Z.; Zhang, S.; et al. Robust sub-meter level indoor localization-a logistic regression approach. In Proceedings of the ICC 2019-2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019.

  • 48.

    Gonultas¸, E.; Taner, S.; Huang, H.; et al. Feature Learning for Neural-Network-Based Positioning with Channel State Information. In Proceedings of the 55th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 31 October–3 November 2021; pp. 156–161.

  • 49.

    Hashem, O.; Harras, K.A.; Youssef, M. DeepNar: Robust time-based sub-meter indoor localization using deep learning. In Proceedings of the 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Como, Italy, 22–25 June 2020.

  • 50.

    Torres-Sospedra, J.; Montoliu, R.; Trilles, S.; et al. Comprehensive analysis of distance and similarity measures for Wi-Fi fingerprinting indoor positioning systems. Expert Syst. Appl. 2015, 42, 9263–9278.

  • 51.

    Jiang, M.; Yuan, J. A device free high-precision indoor positioning and tracking method based on GMM-WKNN algorithm. Sci. Rep. 2025, 15, 17586.

  • 52.

    Guo, Y.; Yan, J. A CSI based localization and identification recognition algorithm using multi-task learning and deep residual shrinkage network. In Proceedings of the IEEE 22nd International Conference on Communication Technology (ICCT), Nanjing, China, 11–14 November 2022; pp. 1770–1776.

  • 53.

    Zhang, Y.; Fan, M.; Xu, C. Intelligent indoor localization based on CSI via radio images and deep learning. Meas. Sci. Technol. 2023, 34, 085002.

  • 54.

    Sobehy, A.; Renault, E.; Muhlethaler, P. NDR: Noise and dimensionality reduction of CSI for indoor positioning using deep learning. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019.

  • 55.

    Sobehy, A. Machine Learning Based Localization in 5G. Ph.D. Thesis, Institut Polytechnique de Paris, Palaiseau, France, 2020.

  • 56.

    Poulose, A.; Han, D.S. UWB indoor localization using deep learning LSTM networks. Appl. Sci. 2020, 10, 6290.

  • 57.

    Zhang, Z.; Lee, M.; Choi, S. Deep-learning-based Wi-Fi indoor positioning system using continuous CSI of trajectories. Sensors 2021, 21, 5776.

  • 58.

    Jia, X.; Liu, P.; Qi, W.; et al. Link-level simulator for 5G localization. IEEE Trans. Wirel. Commun. 2023, 22, 5198–5213.

  • 59.

    WinProp. ALTAIR Engineering Inc. Available online: https://web.altair.com/winprop-telecom (accessed on 18 July 2025).

  • 60.

    Bluetooth LEDirection Finding for TrackingNode Position.MatlabBluetooth Toolbox.Available online: https://www.mathworks. com/help/bluetooth/ug/bluetooth-le-node-tracking-using-direction-finding.html (accessed on 18 July 2025).

  • 61.

    UWB Localization Using IEEE 802.15.4z. Matlab Communication Toolbox. Available online: https://www.mathworks.com/help/comm/ug/uwb-localization-using-ieee-802.15.4z.html (accessed on 18 July 2025).

  • 62.

    Bluetooth LE Positioning by Using Direction Finding. Matlab Bluetooth Toolbox. Available online: https://www.mathworks. com/help/bluetooth/ug/bluetooth-le-based-positioning-using-direction-finding.html (accessed on 18 July 2025).

  • 63.

    Time Difference of Arrival Positioning Using PRS. Matlab LTE Toolbox. Available online: https://www.mathworks.com/help/lte/ug/time-difference-of-arrival-positioning-using-prs.html (accessed on 18 July 2025).

  • 64.

    802.11az Positioning Using Super-Resolution Time of Arrival Estimation. Matlab Wi-Fi Toolbox. Available online: https://www.mathworks.com/help/wlan/ug/802-11az-indoor-positioning-using-super-resolution-time-of-arrivalestimation.html (accessed on 18 July 2025).

  • 65.

    Communications Toolbox Library for ZigBee and UWB. Matlab Wi-Fi Toolbox. Available online: https://www.mathworks.com/matlabcentral/fileexchange/62845-communications-toolbox-library-for-zigbee-and-uwb?s tid=srchtitle5G%20localization 2 (accessed on 18 July 2025).

  • 66.

    NR Positioning Using PRS. Matlab 5G Toolbox. Available online: https://www.mathworks.com/help/5g/ug/nr-prspositioning.html (accessed on 18 July 2025).

  • 67.

    Three-Dimensional Indoor Positioning with 802.11az Fingerprinting and Deep Learning. Matlab WLAN Toolbox. Available online: https://www.mathworks.com/help/wlan/ug/three-dimensional-indoor-positioning-with-802-11az-fingerprintingand-deep-learning.html (accessed on 18 July 2025).

  • 68.

    Xiang, C.; Zhang, S.; Xu, S.; et al. Robust sub-meter level indoor localization with a single WiFi access point—Regression versus classification. IEEE Access 2019, 7, 146309–146321.

  • 69.

    Liu, K.; Tian, Z.; Li, Z.; et al. HiLoc: Sub-meter level indoor localization using a single access point with distributed antennas in wireless sensor networks. IEEE Sensors J. 2021, 22, 4869–4881.

  • 70.

    Jog, S.; Guan, J.; Madani, S.; et al. Enabling IoT Self-Localization Using Ambient 5G Signals. In Proceedings of the 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), Renton, WA, USA, 4–6 April 2022; pp. 1011–1026.

  • 71.

    Bartoletti, S.; Chiaraviglio, L.; Fortes, S.; et al. Location-based analytics in 5G and beyond. IEEE Commun. Mag. 2021, 59, 38–43.

  • 72.

    Behravan, A.; Yajnanarayana, V.; Keskin, M.F.; et al. Positioning and sensing in 6G: Gaps, challenges, and opportunities. IEEE Veh. Technol. Mag. 2022, 18, 40–48.

  • 73.

    Malmstrom, M.; Skog, I.; Razavi, S.M.; et al. 5G positioning-A machine learning approach. In Proceedings of the 16th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany, 23–24 October 2019.

  • 74.

    Muursepp, I.; Kulmar, M.; Elgarhy, O.; et al. Performance evaluation of 5G-NR positioning accuracy using time difference of arrival method. In Proceedings of the IEEE International Mediterranean Conference on Communications and Networking (MeditCom), Athens, Greece, 7–10 September 2021; pp. 494–499.

  • 75.

    Arnold, M.; Hoydis, J.; ten Brink, S. Novel massive MIMO channel sounding data applied to deep learning-based indoor positioning. In Proceedings of the SCC 2019: 12th International ITG Conference on Systems, Communications and Coding, Rostock, Germany, 11–14 February 2019.

  • 76.

    Serreli, L.; Nonnis, R.; Bing¨ol, G.; et al. Fingerprint-based positioning method over LTE advanced pro signals with GAN training contribute. In Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Chengdu, China, 4–6 August 2021.

  • 77.

    Tarekegn, G.B.; Juang, R.T.; Lin, H.P.; et al. Reduce fingerprint construction for positioning IoT devices based on generative adversarial nets. In Proceedings of the International Conference on Pervasive Artificial Intelligence (ICPAI), Taipei, Taiwan, 3–5 December 2020; pp. 23–28.

  • 78.

    De Lima, C.; Belot, D.; Berkvens, R.; et al. Convergent communication, sensing and localization in 6G systems: An overview of technologies, opportunities and challenges. IEEE Access 2021, 9, 26902–26925.

  • 79.

    Butt, M.M.; Rao, A.; Yoon, D. RF fingerprinting and deep learning assisted UE positioning in 5G. In Proceedings of the IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25-28 May 2020.

  • 80.

    Fan, S.; Wu, Y.; Han, C.; Wang, X. SIABR: A structured intra-attention bidirectional recurrent deep learning method for ultra-accurate terahertz indoor localization. IEEE J. Sel. Areas Commun. 2021, 39, 2226–2240.

  • 81.

    Fan, S.; Wu, Y.; Han, C.; et al. A structured bidirectional LSTM deep learning method for 3D terahertz indoor localization. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 2381–2390.

  • 82.

    Lei, H.; Zhang, J.; Xiao, H.; et al. Deep Learning Based Near-Field User Localization with Beam Squint in Wideband XL-MIMO Systems. IEEE Trans. Wirel. Commun. 2024.

  • 83.

    Ohtsuki, T. Machine learning in 6G wireless communications. Ieice Trans. Commun. 2023, 106, 75–83.

  • 84.

    Alnoman, A.; Khwaja, A.S.; Anpalagan, A.; et al. Emerging ai and 6g-based user localization technologies for emergencies and disasters. IEEE Access 2024, 12, 197877–197906.

  • 85.

    Zhang, J.; Xu, Z.; Zhang, S.; et al. A Deep Learning-Based Indoor Positioning Approach Using Channel and Spatial Attention. IEEE Commun. Lett. 2024, 29, 373–377.

  • 86.

    Pan, G.; Huang, K.; Chen, H.; et al. Large Wireless Localization Model (LWLM): A Foundation Model for Positioning in 6G Networks. arXiv 2025, arXiv:2505.10134.

  • 87.

    Win, M.Z.; Meyer, F.; Liu, Z.; et al. Efficient multisensor localization for the Internet of Things: Exploring a new class of scalable localization algorithms. IEEE Signal Process. Mag. 2018, 35, 153–167.

  • 88.

    Sadowski, S.; Spachos, P. RSSI-based indoor localization with the Internet of Things. IEEE Access 2018, 6, 30149–30161.

  • 89.

    Bregar, K.; Mohorcic, M. Improving indoor localization using convolutional neural networks on computationally restricted devices. IEEE Access 2018, 6, 17429–17441.

  • 90.

    Quezada-Gaibor, D.; Torres-Sospedra, J.; Nurmi, J.; et al. Surimi: Supervised radio map augmentation with deep learning and a generative adversarial network for fingerprint-based indoor positioning. In Proceedings of the IEEE 12th International Conference on Indoor Positioning and Indoor Navigation (IPIN), Beijing, China, 5–8 September 2022.

  • 91.

    Wang, C.; Lin, Z. Precise indoor positioning based on UWB and deep learning. arXiv 2022, arXiv:2204.07933.

  • 92.

    Otim, T.; Bahillo, A.; D´ıez, L.E.; et al. Towards sub-meter level UWB indoor localization using body wearable sensors. IEEE Access 2020, 8, 178886–178899.

  • 93.

    Saily, M.; Yilmaz, O.N.; Michalopoulos, D.S.; et al. Positioning technology trends and solutions toward 6G. In Proceedings of the IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2021.

  • 94.

    Wei, W.; Yan, J.; Wan, L.; et al. Enriching indoor localization fingerprint using a single AC-GAN. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021.

  • 95.

    Lim, C.; Paek, J. Cost reduction in fingerprint-based indoor localization using generative adversarial network. In Proceedings of the International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 20–22 October 2021; pp. 1024–1026.

  • 96.

    Njima, W.; Chafii, M.; Shubair, R.M. GAN based data augmentation for indoor localization using labeled and unlabeled data. In Proceedings of the International Balkan Conference on Communications and Networking (BalkanCom), Novi Sad, Serbia, 20–22 September 2021; pp. 36–39.

  • 97.

    Njima, W.; Chafii, M.; Chorti, A.; et al. Indoor localization using data augmentation via selective generative adversarial networks. IEEE Access 2021, 9, 98337–98347.

  • 98.

    Zhou, M.; Lin, Y.; Zhao, N.; et al. Indoor WLAN intelligent target intrusion sensing using ray-aided generative adversarial network. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4, 61–73.

  • 99.

    Belmonte-Hernandez, A.; Hernandez-Penaloza, G.; Gutierrez, D.M.; et al. Recurrent model for wireless indoor tracking and positioning recovering using generative networks. IEEE Sensors J. 2019, 20, 3356–3365.

  • 100.

    Njima, W.; Bazzi, A.; Chafii, M. DNN-based indoor localization under limited dataset using GANs and semi-supervised learning. IEEE Access 2022, 10, 69896–69909.

  • 101.

    Ren, X.; Tao, W.; Own, C.M. RSS remeasurement estimation for indoor positioning system with generative adversarial network model. In Proceedings of the 2nd International Conference on Computing, Networks and Internet of Things, Beijing, China, 20–22 May 2021.

  • 102.

    Chen, K.M.; Chang, R.Y. Semi-supervised learning with GANs for device-free fingerprinting indoor localization. In Proceedings of the GLOBECOM 2020-2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020.

  • 103.

    Liu, X.Y.; Wang, X. Real-time indoor localization for smartphones using tensor-generative adversarial nets. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 3433–3443.

  • 104.

    Suroso, D.J.; Cherntanomwong, P.; Sooraksa, P. Deep generative model-based RSSI synthesis for indoor localization. In Proceedings of the 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Prachuap Khiri Khan, Thailand, 24-27 May 2022; pp. 1–5.

  • 105.

    Shokry, A.; Youssef, M. Handling Device Heterogeneity for Deep Learning-based Localization. arXiv 2024, arXiv:2407.16923.

  • 106.

    Hao, L.; Huang, B.; Jia, B.; et al. DHCLoc: A device-heterogeneity-tolerant and channel-adaptive passiveWiFi localization method based on DNN. IEEE Internet Things J. 2021, 9, 4863–4874.

  • 107.

    Yuan, Y.; Liu, X.; Liu, Z.; et al. Indoor localization with wireless heterogeneous devices by composite fingerprint sets and hybrid classification. IEEE Trans. Veh. Technol. 2022, 71, 12117–12127.

  • 108.

    Chen, P.; Zhang, K.; Gao, S.; et al. Achieving Cross-domain NLOS Localization via Edge-assisted Semi-supervised Learning. IEEE Trans. Wirel. Commun. 2025, 24, 7424–7436.

  • 109.

    Owfi, A. Generalizable Deep-Learning-BasedWireless Indoor Localization. Master’s Thesis, Clemson University, Clemson, SC, USA, 2023.

  • 110.

    Zhang, J.; Xue, J.; Li, Y.; et al. Leveraging online learning for domain-adaptation in Wi-Fi-based device-free localization. IEEE Trans. Mob. Comput. 2025, 24, 7773–7787.

  • 111.

    Zhang, L.; Qiu, Y.; Li, D.; et al. Scenario-Agnostic Deep-Learning-Based Localization with Contrastive Self-Supervised Pre-training. arXiv 2025, arXiv:2508.03084.

Share this article:
How to Cite
Xia, H.; Andrews, M.; Conti, A.; Lawrence, V.; Win, M. Z.; Yao, Y.-D. Wireless Localization Using Deep Learning: A Survey. AI Engineering 2026, 2 (1), 1. https://doi.org/10.53941/aieng.2026.100001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.