- 1.
Zhang, Z.; Yu, L.; Liang, X.; Zhao, W.; Xing, L. TransCT: Dual-path transformer for low dose computed tomography. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, 27 September–1 October 2021; Part VI 24, pp. 55–64.
- 2.
Jiang, H. Computed Tomography: Principles, Design, Artifacts, and Recent Advances; SPIE: Bellingham, WA, USA, 2009.
- 3.
Brenner, D.J.; Hall, E.J. Computed Tomography — An Increasing Source of Radiation Exposure. N. Engl. J. Med. 2007, 357, 2277–2284.
- 4.
de Gonzalez, A.B.; Darby, S. Risk of cancer from diagnostic X-rays: Estimates for the UK and 14 other countries. Lancet 2004, 363, 345–351.
- 5.
Naidich, D.P.; Marshall, C.H.; Gribbin, C.; Arams, R.S.; McCauley, D.I. Low-dose CT of the lungs: preliminary observations. Radiology 1990, 175, 729–731.
- 6.
Yin, X.; Coatrieux, J.-L.; Zhao, Q.; Liu, J.; Yang, W.; Yang, J.; Quan, G.; Chen, Y.; Shu, H.; Luo, L. Domain Progressive 3D Residual Convolution Network to Improve Low-Dose CT Imaging. IEEE Trans. Med Imaging 2019, 38, 2903–2913.
- 7.
Han, Y.S.; Yoo, J.; Ye, J.C. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis. arXiv 2016, arXiv:1611.06391.
- 8.
Chen, Y.; Yin, X.; Shi, L.; Shu, H.; Luo, L.; Coatrieux, J.-L.; Toumoulin, C. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing. Phys. Med. Biol. 2013, 58, 5803–5820.
- 9.
Thanh, D.; Surya, P.; Hieu, L.M. A Review on CT and X-Ray Images Denoising Methods. Informatica 2019, 43, 151–159.
- 10.
Diwakar, M.; Kumar, M. A review on CT image noise and its denoising. Biomed. Signal Process. Control. 2018, 42, 73–88.
- 11.
Wang, H.; Chi, J.; Wu, C.; Yu, X.; Wu, H. Degradation adaption localto-global transformer for low-dose CT image denoising. J. Digit. Imaging 2023, 36, 1894–1909.
- 12.
Chen, Z.; Gao, Q.; Zhang, Y.; Shan, H. Ascon: Anatomy-aware supervised contrastive learning framework for low-dose CT denoising. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention, Vancouver, BC, Canada, 8–12 October 2023; pp. 355–365.
- 13.
Manduca, A.; Yu, L.; Trzasko, J.D.; Khaylova, N.; Kofler, J.M.; McCollough, C.M.; Fletcher, J.G. Projection space denoising with bilateral filtering and CT noise modeling for dose reduction in CT. Med. Phys. 2009, 36, 4911–4919.
- 14.
Kachelriess, M.; Watzke, O.; Kalender, W.A. Generalized multidimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med. Phys. 2001, 28, 475–490.
- 15.
Hsieh, J. Adaptive streak artifact reduction in computed tomography resulting from excessive X-ray photon noise. Med. Phys. 1998, 25, 2139–2147.
- 16.
Wang, J.; Li, T.; Lu, H.; Liang, Z. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography. IEEE Trans. Med. Imaging 2006, 25, 1272–1283.
- 17.
Zeng, D.; Huang, J.; Bian, Z.; Niu, S.; Zhang, H.; Feng, Q.; Liang, Z.; Ma, J. A Simple Low-Dose X-Ray CT Simulation from High-Dose Scan. IEEE Trans. Nucl. Sci. 2015, 62, 2226–2233.
- 18.
Fletcher, J.G.; Grant, K.L.; Fidler, J.L.; Shiung, M.; Yu, L.; Wang, J.; Schmidt, B.; Allmendinger, T.; McCollough, C.H. Validation of dual source single-tube reconstruction as a method to obtain half-dose images to evaluate radiation dose and noise reduction: Phantom and human assessment using CT colonography and sinogram-affirmed iterative reconstruction (safire). J. Comput. Assist. Tomogr. 2012, 36, 560–569.
- 19.
Pickhardt, P.J.; Lubner, M.G.; Kim, D.H.; Tang, J.; Ruma, J.A.; del Rio, A.M.; Chen, G.-H. Abdominal CT with Model-Based Iterative Reconstruction (MBIR): Initial Results of a Prospective Trial Comparing Ultralow-Dose with Standard Dose Imaging. Am. J. Roentgenol. 2012, 199, 1266–1274.
- 20.
Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88.
- 21.
Kaur, P.; Singh, G.; Kaur, P. A review of denoising medical images using machine learning approaches. Curr. Med. Imaging 2018, 14, 675–685.
- 22.
Buades, A.; Coll, B.; Morel, J.M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 60–65.
- 23.
Balda, M.; Hornegger, J.; Heismann, B. Ray Contribution Masks for Structure Adaptive Sinogram Filtering. IEEE Trans. Med Imaging 2012, 31, 1228–1239.
- 24.
Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693.
- 25.
Yu, F.; Chen, Y.; Luo, L. CT image denoising based on sparse representation using global dictionary. In Proceedings of the 2013 ICME International Conference on Complex Medical Engineering, Beijing, China, 25–28 May 2013; pp. 408–411.
- 26.
Chen, Y.; Yang, Z.; Hu, Y.; Yang, G.; Zhu, Y.; Li, Y.; Luo, L.; Chen, W.; Toumoulin, C. Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means. Phys. Med. Biol. 2012, 57, 2667–2688.
- 27.
Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095.
- 28.
Hashemi, S.; Paul, N.S.; Beheshti, S.; Cobbold, R.S.C. Adaptively Tuned Iterative Low Dose CT Image Denoising. Comput. Math. Methods Med. 2015, 2015, 638568.
- 29.
Ha, S.; Mueller, K. Low dose CT image restoration using a database of image patches. Phys. Med. Biol. 2015, 60, 869–882.
- 30.
Zhang, Z.; Han, X.; Pearson, E.; Pelizzari, C.; Sidky, E.Y.; Pan, X. Artifact reduction in short-scan CBCT by use of optimization-based reconstruction. Phys. Med. Biol. 2016, 61, 3387–3406.
- 31.
Chen, H.; Zhang, Y.; Kalra, M.K.; Lin, F.; Chen, Y.; Liao, P.; Zhou, J.; Wang, G. Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network. IEEE Trans. Med. Imaging 2017, 36, 2524–2535.
- 32.
Shan, H.; Padole, A.; Homayounieh, F.; Kruger, U.; Khera, R.D.; Nitiwarangkul, C.; Kalra, M.K.; Wang, G. Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat. Mach. Intell. 2019, 1, 269–276.
- 33.
Kang, E.; Chang, W.; Yoo, J.; Ye, J.C. Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network. IEEE Trans. Med Imaging 2018, 37, 1358–1369.
- 34.
Chen, H.; Zhang, Y.; Zhang, W.; Liao, P.; Li, K.; Zhou, J.; Wang, G. Low dose CT denoising with convolutional neural network. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, VIC, Australia, 18–21 April 2017; pp. 143–146.
- 35.
Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2472–2481.
- 36.
Rai, S.; Bhatt, J.S.; Patra, S.K. Augmented Noise Learning Framework for Enhancing Medical Image Denoising. IEEE Access 2021, 9, 117153–117168.
- 37.
Rai, S.; Bhatt, J.S.; Patra, S.K. Accessible, affordable and low-risk lungs health monitoring in COVID-19: Deep cascade reconstruction from degraded lr-uldct. In Proceedings of the 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata, India, 28–31 March 2022; pp. 1–5.
- 38.
Choi, K.; Vania, M.; Kim, S. Semi-supervised learning for lowdose CT image restoration with hierarchical deep generative adversarial network (hd-gan). In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 2683–2686.
- 39.
Wang, L.; Gao, Q.; Meng, M.; Li, S.; Zhu, M.; Li, D.; Chen, G.; Zeng, D.; Xie, Q.; Zhao, Q.; et al. Semi-supervised noise distribution learning for low-dose CT restoration. Med. Imaging 2020 Phys. Med. Imaging 2020, 11312, 1026–1030.
- 40.
Bizopoulos, P.; Vretos, N.; Daras, P. Comprehensive comparison of deep learning models for lung and COVID-19 lesion segmentation in CT scans. arXiv 2020, arXiv:2009.06412, 2020.
- 41.
Shahidi, F.; Daud, S.M.; Abas, H.; Ahmad, N.A.; Maarop, N. Breast Cancer Classification Using Deep Learning Approaches and Histopathology Image: A Comparison Study. IEEE Access 2020, 8, 187531–187552.
- 42.
Yi, X.; Babyn, P. Sharpness-Aware Low-Dose CT Denoising Using Conditional Generative Adversarial Network. J. Digit. Imaging 2018, 31, 655–669.
- 43.
Yang, Q.; Yan, P.; Zhang, Y.; Yu, H.; Shi, Y.; Mou, X.; Kalra, M.K.; Zhang, Y.; Sun, L.; Wang, G. Low-Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss. IEEE Trans. Med. Imaging 2018, 37, 1348–1357.
- 44.
Nishio, M.; Nagashima, C.; Hirabayashi, S.; Ohnishi, A.; Sasaki, K.; Sagawa, T.; Hamada, M.; Yamashita, T. Convolutional auto-encoder for image denoising of ultra-low-dose CT. Heliyon 2017, 3, e00393.
- 45.
Liu, Y.; Zhang, Y. Low-dose CT restoration via stacked sparse denoising autoencoders. Neurocomputing 2018, 284, 80–89.
- 46.
Liu, H.; Liao, P.; Chen, H.; Zhang, Y. ERA-WGAT: Edge-enhanced residual autoencoder with a window-based graph attention convolutional network for low-dose CT denoising. Biomed. Opt. Express 2022, 13, 5775–5793.
- 47.
Wang, D.; Xu, Y.; Han, S.; Yu, H. Masked autoencoders for low-dose CT denoising. In Proceedings of the 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), Cartagena, Colombia, 18–21 April 2023; pp. 1–4.
- 48.
Li, M.; Hsu, W.; Xie, X.; Cong, J.; Gao, W. SACNN: Self-Attention Convolutional Neural Network for Low-Dose CT Denoising With Self-Supervised Perceptual Loss Network. IEEE Trans. Med. Imaging 2020, 39, 2289–2301.
- 49.
Karimi, D.; Dou, H.; Warfield, S.K.; Gholipour, A. Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis. Med. Image Anal. 2020, 65, 101759.
- 50.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11.
- 51.
Luthra, A.; Sulakhe, H.; Mittal, T.; Iyer, A.; Yadav, S. Eformer: Edge enhancement based transformer for medical image denoising. arXiv 2021, arXiv:2109.08044.
- 52.
Yuan, J.; Zhou, F.; Guo, Z.; Li, X.; Yu, H. HCformer: Hybrid CNN-Transformer for LDCT Image Denoising. J. Digit. Imaging 2023, 36, 2290–2305.
- 53.
Chyophel Lepcha, D.; Goyal, B.; Dogra, A. Low-dose CT image denoising using sparse 3dD transformation with probabilistic non-local means for clinical applications. Imaging Sci. J. 2023, 71, 97–109.
- 54.
Othman, A.E.; Brockmann, C.; Yang, Z.; Kim, C.; Afat, S.; Pjontek, R.; Nikoubashman, O.; Brockmann, M.A.; Nikolaou, K.; Wiesmann, M.; et al. Impact of image denoising on image quality, quantitative parameters and sensitivity of ultra-low-dose volume perfusion CT imaging. Eur. Radiol. 2015, 26, 167–174.
- 55.
Kulathilake, K.A.S.H.; Abdullah, N.A.; Sabri, A.Q.M.; Lai, K.W. A review on Deep Learning approaches for low-dose Computed Tomography restoration. Complex Intell. Syst. 2021, 9, 2713–2745.
- 56.
Mück, J.; Reiter, E.; Klingert, W.; Bertolani, E.; Schenk, M.; Nikolaou, K.; Afat, S.; Brendlin, A.S. Towards safer imaging: A comparative study of deep learning-based denoising and iterative reconstruction in intraindividual low-dose CT scans using an in-vivo large animal model. Eur. J. Radiol. 2023, 171, 111267.
- 57.
Liang, T.; Jin, Y.; Li, Y.; Wang, T. Edcnn: Edge enhancement-based densely connected network with compound loss for low-dose CT denoising. In Proceedings of the 2020 15th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 6–9 December 2020; Volume 1, pp. 193–198.
- 58.
Fan, F.; Shan, H.; Kalra, M.K.; Singh, R.; Qian, G.; Getzin, M.; Teng, Y.; Hahn, J.; Wang, G. Quadratic Autoencoder (Q-AE) for Low-Dose CT Denoising. IEEE Trans. Med. Imaging 2019, 39, 2035–2050.
- 59.
Won, D.K.; An, S.; Park, S.H.; Ye, D.H. Low-dose CT denoising using octave convolution with high and low frequency bands. In Predictive Intelligence in Medicine: Third International Workshop, PRIME 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, 8 October 2020; Springer: Cham, Switzerland, 2020; pp. 68–78.
- 60.
Wang, D.; Fan, F.; Wu, Z.; Liu, R.; Wang, F.; Yu, H. CTformer: convolution-free Token2Token dilated vision transformer for low-dose CT denoising. Phys. Med. Biol. 2023, 68, 065012.
- 61.
- 62.
Yang, L.; Shangguan, H.; Zhang, X.; Wang, A.; Han, Z. High-Frequency Sensitive Generative Adversarial Network for Low-Dose CT Image Denoising. IEEE Access 2019, 8, 930–943.
- 63.
Lee, S.; Lee, M.S.; Kang, M.G. Poisson–Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain. Sensors 2018, 18, 1019.
- 64.
Liu, H.; Jin, X.; Liu, L. Low-Dose CT Image Denoising Based on Improved DD-Net and Local Filtered Mechanism. Comput. Intell. Neurosci. 2022, 2022, 2692301.
- 65.
Yu, X.; Wang, J.; Hong, Q.Q.; Teku, R.; Wang, S.H.; Zhang, Y.D. Transfer learning for medical images analyses: A survey. Neurocomputing 2022, 489, 230–254.
- 66.
Huang, C.; Wang, J.; Wang, S.H.; Zhang, Y.D. Applicable artificial intelligence for brain disease: A survey. Neurocomputing 2022, 504, 223–239.
- 67.
Tian, D.; Zhu, B.; Wang, J.; Kong, L.; Gao, B.; Wang, Y.; Xu, D.; Zhang, R.; Yao, Y. Brachial plexus nerve trunk recognition from ultrasound images: A comparative study of deep learning models. IEEE Access 2022, 10, 82003–82014.