- 1.
Ray, S.C. Applications of Graphene and Graphene-Oxide Based Nanomaterials; William Andrew Publishing: Norwich, NY, USA, 2015. https://doi.org/10.1016/C2014-0-02615-9.
- 2.
Wang, X.; Zhi, L.; Müllen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008, 8, 323–327. https://doi.org/10.1021/nl072838r.
- 3.
Balandin, A.A.; Ghosh, S.; Bao, W.; et al. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. https://doi.org/10.1021/nl0731872.
- 4.
Kim, T.Y.; Park, C.-H.; Marzari, N. The Electronic Thermal Conductivity of Graphene. Nano Lett. 2016, 16, 2439–2443. https://doi.org/10.1021/acs.nanolett.5b05288.
- 5.
Yavari, F.; Koratkar, N. Graphene-Based Chemical Sensors. J. Phys. Chem. Lett. 2012, 3, 1746–1753. https://doi.org/10.1021/jz300358t.
- 6.
Hill, E.W.; Vijayaragahvan, A.; Novoselov, K. Graphene Sensors. IEEE Sens. J. 2011, 11, 3161–3170. https://doi.org/10.1109/JSEN.2011.2167608.
- 7.
Zhou, Y.; Bao, Q.; Tang, L.A.L.; et al. Hydrothermal Dehydration for the “Green” Reduction of Exfoliated Graphene Oxide to Graphene and Demonstration of Tunable Optical Limiting Properties. Chem. Mater. 2009, 21, 2950–2956. https://doi.org/10.1021/cm9006603.
- 8.
Huang, C.; Li, C.; Shi, G. Graphene based catalysts. Energy Environ. Sci. 2012, 5, 8848–8868. https://doi.org/10.1039/C2EE22238H
- 9.
Julkapli, N.M.; Bagheri, S. Graphene supported heterogeneous catalysts: An overview. Int. J. Hydrogen Energy 2015, 40, 948–979. https://doi.org/10.1016/j.ijhydene.2014.10.129.
- 10.
Falkovsky, L.A. Optical properties of graphene. J. Phys. Conf. Ser. 2008, 129, 012004. https://doi.org/10.1088/1742-6596/129/1/012004.
- 11.
Shao, Y.; El-Kady, M.F.; Wang, L.J.; et al. Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 2015, 44, 3639–3665. https://doi.org/10.1039/C4CS00316K.
- 12.
Nag, A.; Mitra, A.; Mukhopadhyay, S.C. Graphene and its sensor-based applications: A review. Sens. Actuators A Phys. 2018, 270, 177–194. https://doi.org/10.1016/j.sna.2017.12.028.
- 13.
Ghosh, S.; Barg, S.; Jeong, S.M.; et al. Heteroatom-Doped and Oxygen-Functionalized Nanocarbons for High-Performance Supercapacitors. Adv. Energy Mater. 2020, 10, 2001239. https://doi.org/10.1002/aenm.202001239.
- 14.
Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224. https://doi.org/10.1038/nnano.2009.58.
- 15.
Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes—A review. J. Mater. 2016, 2, 37–54. https://doi.org/10.1016/j.jmat.2016.01.001.
- 16.
Huang, S.; Zhu, X.; Sarkar, S.; et al. Challenges and opportunities for supercapacitors. APL Mater. 2019, 7, 100901. https://doi.org/10.1063/1.5116146.
- 17.
Akaishi, A.; Yonemaru, T.; Nakamura, J. Formation of Water Layers on Graphene Surfaces. ACS Omega 2017, 2, 2184–2190. https://doi.org/10.1021/acsomega.7b00365.
- 18.
Wang, Y.; Tang, F.; Yu, X.; et al. Heterodyne-Detected Sum-Frequency Generation Vibrational Spectroscopy Reveals Aqueous Molecular Structure at the Suspended Graphene/Water Interface. Angew. Chem. Int. Ed. 2024, 63, e202319503. https://doi.org/10.1002/anie.202319503.
- 19.
Bouzid, A.; Gono, P.; Pasquarello, A. Reaction pathway of oxygen evolution on Pt(111) revealed through constant Fermi level molecular dynamics. J. Catal. 2019, 375, 135–139.
- 20.
Noordhoek, K.; Bartel, C.J. Accelerating the prediction of inorganic surfaces with machine learning interatomic potentials. Nanoscale 2024, 16, 6365–6382. https://doi.org/10.1039/D3NR06468A.
- 21.
Islam, S.M.R.; Khezeli, F.; Ringe, S.; et al. An implicit electrolyte model for plane wave density functional theory exhibiting nonlinear response and a nonlocal cavity definition. J. Chem. Phys. 2023, 159, 234117. https://doi.org/10.1063/5.0176308.
- 22.
Mathew, K.; Kolluru, V.S.C.; Mula, S.; et al. Implicit self-consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys. 2019, 151, 234101. https://doi.org/10.1063/1.5132354.
- 23.
Ringe, S.; Hörmann, N.G.; Oberhofer, H.; et al. Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chem. Rev. 2022, 122, 10777–10820. https://doi.org/10.1021/acs.chemrev.1c00675.
- 24.
Hinsch, J.J.; Bouzid, A.; Barker, J.C.; et al. Revisiting the Electrified Pt(111)/Water Interfaces through an Affordable Double-Reference Ab Initio Approach. J. Phys. Chem. C 2023, 127, 19857–19866. https://doi.org/10.1021/acs.jpcc.3c05425.
- 25.
Xu, P.; von Rueden, A.D.; Schimmenti, R.; et al. Optical method for quantifying the potential of zero charge at the platinum–water electrochemical interface. Nat. Mater. 2023, 22, 503–510. https://doi.org/10.1038/s41563-023-01474-8.
- 26.
Hinsch, J.J.; White, J.J.; Wang, Y. Theoretical investigation on potential of zero free charge of (111) and (100) surfaces of Group 10 and 11 metals. Comput. Theor. Chem. 2024, 1232, 114462. https://doi.org/10.1016/j.comptc.2024.114462.
- 27.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. https://doi.org/10.1016/0927-0256(96)00008-0.
- 28.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169.
- 29.
Wang, V.; Xu, N.; Liu, J.-C.; et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033. https://doi.org/10.1016/j.cpc.2021.108033.
- 30.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758.
- 31.
Klimeš, J.; Bowler, D.R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 2010, 22, 022201. https://doi.org/10.1088/0953-8984/22/2/022201.
- 32.
Yang, W.; Ni, M.; Ren, X.; et al. Graphene in Supercapacitor Applications. Curr. Opin. Colloid Interface Sci. 2015, 20, 416–428. https://doi.org/10.1016/j.cocis.2015.10.009.
- 33.
Tan, Y.B.; Lee, J.-M. Graphene for supercapacitor applications. J. Mater. Chem. A 2013, 1, 14814–14843. https://doi.org/10.1039/C3TA12193C.
- 34.
Papageorgiou, D.G.; Kinloch, I.A.; Young, R.J. Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. https://doi.org/10.1016/j.pmatsci.2017.07.004.
- 35.
X-Ability Co., Ltd. Winmostar V11.13.2; X-Ability Co., Ltd.: Tokyo, Japan, 2025.
- 36.
Mortier, F.; Zhao, D.; Otani, M.; et al. First-principles investigation of electrified monolayered MoS2/water interface. Surf. Sci. 2026, 764, 122870. https://doi.org/10.1016/j.susc.2025.122870.
- 37.
VandeVondele, J.; Mohamed, F.; Krack, M.; et al. The influence of temperature and density functional models in ab initio molecular dynamics simulation of liquid water. J. Chem. Phys. 2004, 122, 014515. https://doi.org/10.1063/1.1828433.
- 38.
Sit, P.H.L.; Marzari, N. Static and dynamical properties of heavy water at ambient conditions from first-principles molecular dynamics. J. Chem. Phys. 2005, 122, 204510. https://doi.org/10.1063/1.1908913.
- 39.
Soper, A.K. Water and Ice Structure in the Range 220—365 K from Radiation Total Scattering Experiments; IOS Press: Amsterdam, The Netherlands, 2014. https://doi.org/10.3254/978-1-61499-507-4-151.
- 40.
Paszke, A.; Gross, S.; Chintala, S.; et al. Automatic Differentiation in PyTorch; NIPS-W: San Diego, CA, USA, 2017.
- 41.
Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.