2512002653
  • Open Access
  • Review

Driving Catalytic Innovation: The Development and Application of Machine Learning Force Fields

  • Xiaoyi Hu 1,   
  • Guanjie Wang 2,*,   
  • Cuilian Wen 1,   
  • Baisheng Sa 1,*

Received: 22 Oct 2025 | Revised: 25 Nov 2025 | Accepted: 26 Dec 2025 | Published: 07 Jan 2026

Abstract

Catalytic reactions lie at the heart of the modern chemical industry, where their efficiency being determined by microscopic interactions occurring on the surface of the catalyst. A comprehensive understanding of these mechanisms in atomic-scale is imperative for the rational design and process optimization of chemical reactions. However, computational simulations have long grappled with inherent limitations: high-accuracy first-principles methods demand exorbitant computational resources, whereas classical force fields often fail to capture the nuanced dynamics of chemical reactions. The emergence of machine learning force fields (MLFFs) has led to significant advancements in addressing this bottleneck, offering a promising balance between precision and efficiency. This review provides a systematic overview of the evolution of MLFFs methodologies in practical catalytic applications, and highlights their respective advantages as well as the persisting challenges. By consolidating contemporary research trends and unresolved obstacles, this work provides valuable insights for subsequent researchers by synthesizing existing approaches and challenges, contributing to the refinement of MLFFs computational algorithms and their broader application in complex catalytic systems.

References 

  • 1.

    Centi, G.; Quadrelli, E.A.; Perathoner, S. Catalysis for CO2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 2013, 6, 1711–1731. https://doi.org/10.1039/c3ee00056g.

  • 2.

    Deng, R.J.; You, K.Y.; Zhao, F.F.; et al. Highly selective preparation of valuable dinitronaphthalene from catalytic nitration of 1-nitronaphthalene with NO2 over HY zeolite. Can. J. Chem. Eng. 2018, 96, 2586–2592. https://doi.org/10.1002/cjce.23194.

  • 3.

    Deng, Z.; Guo, Y.; Sun, Z.; et al. Electrocatalytic organic transformation reactions in green chemistry: Exploring nanocrystals and single atom catalysts. Nano Res. 2024, 17, 9326–9344. https://doi.org/10.1007/s12274-024-6887-8.

  • 4.

    Yoon, Y.; You, H.M.; Oh, J.; et al. Recent advances in atomic-scale simulations for supported metal catalysts. Mol. Catal. 2024, 554, 113862. https://doi.org/10.1016/j.mcat.2024.113862.

  • 5.

    Galwey, A.K. Is the science of thermal analysis kinetics based on solid foundations? A literature appraisal. Thermochim. Acta 2004, 413, 139–183. https://doi.org/10.1016/j.tca.2003.10.013.

  • 6.

    Kiss, G.; Pande, V.S.; Houk, K.N. Molecular Dynamics Simulations for the Ranking, Evaluation, and Refinement of Computationally Designed Proteins. In Methods in Protein Design; Keating, A.E., Ed.; Academic Press: Cambridge, MA, USA, 2013; Volume 523, pp. 145–170.

  • 7.

    Chen, H.Y. Recent advances in computational study and design of MOF catalysts for CO2 conversion. Front. Energy Res. 2022, 10, 1016406. https://doi.org/10.3389/fenrg.2022.1016406.

  • 8.

    Chen, X.Y.; Yang, X.Z. Mechanistic Insights and Computational Design of Transition-Metal Catalysts for Hydrogenation and Dehydrogenation Reactions. Chem. Rec. 2016, 16, 2364–2378. https://doi.org/10.1002/tcr.201600049.

  • 9.

    Luo, Y.; Maeda, S.; Ohno, K. Water-catalyzed gas-phase reaction of formic acid with hydroxyl radical: A computational investigation. Chem. Phys. Lett. 2009, 469, 57–61. https://doi.org/10.1016/j.cplett.2008.12.087.

  • 10.

    Li, X.; Zou, Y.; Zhao, Y.Q.; et al. Density functional theory studies of Pt-based catalysts for CO oxidation. Sci. China-Technol. Sci. 2025, 68, 1310501. https://doi.org/10.1007/s11431-024-2867-9.

  • 11.

    Chizallet, C.; Raybaud, P. Density functional theory simulations of complex catalytic materials in reactive environments: Beyond the ideal surface at low coverage. Catal. Sci. Technol. 2014, 4, 2797–2813. https://doi.org/10.1039/c3cy00965c.

  • 12.

    Wang, Y.G.; Mei, D.H.; Glezakou, V.A.; et al. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat. Commun. 2015, 6, 6511. https://doi.org/10.1038/ncomms7511.

  • 13.

    Fu, D.L.; Guo, W.Y.; Li, M.; et al. Adsorption and reaction mechanisms of SO2 on Rh(111) surface: A first-principle study. J. Mol. Struct. 2014, 1062, 68–76. https://doi.org/10.1016/j.molstruc.2014.01.035.

  • 14.

    Fu, C.; Shi, Y.Y.; Li, K.; et al. CO2 reduction catalysis of CO doped Cu nanoparticles anchored to graphene: A DFT study. Comput. Theor. Chem. 2025, 1254, 115489. https://doi.org/10.1016/j.comptc.2025.115489.

  • 15.

    Dudnik, A.S.; Xia, Y.Z.; Li, Y.H.; et al. Computation-Guided Development of Au-Catalyzed Cycloisomerizations Proceeding via 1,2-Si or 1,2-H Migrations: Regiodivergent Synthesis of Silylfurans. J. Am. Chem. Soc. 2010, 132, 7645–7655. https://doi.org/10.1021/ja910290c.

  • 16.

    Cornaton, Y.; Djukic, J.P. Noncovalent Interactions in Organometallic Chemistry: From Cohesion to Reactivity, a New Chapter. Acc. Chem. Res. 2021, 54, 3828–3840. https://doi.org/10.1021/acs.accounts.1c00393.

  • 17.

    Matsumoto, K.; Misawa, N.; Kanesato, S.; et al. Atomistic simulation of olefin polymerization reaction by organometallic catalyst: Significant role of microscopic structural dynamics of (pyridylamido) Hf(IV) complex in catalytic reactivity. Front. Chem. 2025, 13, 1618025. https://doi.org/10.3389/fchem.2025.1618025.

  • 18.

    Steinmann, S.N.; Wang, Q.; Seh, Z.W. How machine learning can accelerate electrocatalysis discovery and optimization. Mater. Horiz. 2023, 10, 393–406. https://doi.org/10.1039/d2mh01279k.

  • 19.

    Barford, W. Exciton dynamics in conjugated polymer systems. Front. Phys. 2022, 10. https://doi.org/10.3389/fphy.2022.1004042.

  • 20.

    Gu, Y.; Wang, L.; Xu, B.Q.; et al. Recent advances in the molecular-level understanding of catalytic hydrogenation and oxidation reactions at metal-aqueous interfaces. Chin. J. Catal. 2023, 54, 1–55. https://doi.org/10.1016/S1872-2067(23)64550-4.

  • 21.

    Zhou, Z.H.; Cui, H.Q.; Fan, H.J.; et al. A Reactive Explicit Electron Force Field for Hydrocarbons. J. Chem. Theory Comput. 2025, 21, 6988–7001. https://doi.org/10.1021/acs.jctc.5c00633.

  • 22.

    Keith, J.A.; Vassilev-Galindo, V.; Cheng, B.Q.; et al. Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems. Chem. Rev. 2021, 121, 9816–9872. https://doi.org/10.1021/acs.chemrev.1c00107.

  • 23.

    Nyangiwe, N.N. Applications of density functional theory and machine learning in nanomaterials: A review. Next Mater. 2025, 8, 100683. https://doi.org/10.1016/j.nxmate.2025.100683.

  • 24.

    Yoon, U.; Jeong, K.; Kim, S.H. Advancing electrocatalysis through density functional theory: From reaction mechanisms to machine learning integration. J. CO2 Util. 2025, 101, 103192. https://doi.org/10.1016/j.jcou.2025.103192.

  • 25.

    Yu, Q.M.; Ma, N.G.; Leung, C.; et al. AI in single-atom catalysts: A review of design and applications. J. Mater. Inform. 2025, 5, 9. https://doi.org/10.20517/jmi.2024.78.

  • 26.

    Deshmukh, G.; Ghanekar, P.; Greeley, J. Deep Learning for Computational Heterogeneous Catalysis: Fundamentals and Applications. J. Indian Inst. Sci. 2025. https://doi.org/10.1007/s41745-025-00484-6.

  • 27.

    Wayo, D.D.K.; Goliatt, L.; Ganji, M.D. DFT and hybrid classical-quantum machine learning integration for photocatalyst discovery and hydrogen production. Rev. Chem. Eng. 2025, 41, 741–774. https://doi.org/10.1515/revce-2025-0022.

  • 28.

    Liu, M.F.; Wang, J.T.; Hu, J.W.; et al. Layer-by-layer phase transformation in Ti3O5 revealed by machine-learning molecular dynamics simulations. Nat. Commun. 2024, 15, 3079. https://doi.org/10.1038/s41467-024-47422-1.

  • 29.

    Chen, M.Y.; Hu, J.W.; Yu, Y.C.; et al. Advances in Machine Learning Molecular Dynamics to Assist Materials Nucleation and Solidification Research. Acta Metall. Sin. 2024, 60, 1329–1344. https://doi.org/10.11900/0412.1961.2024.00192.

  • 30.

    Kubo, M.; Ando, M.; Sakahara, S.; et al. Development of tight-binding, chemical-reaction-dynamics simulator for combinatorial computational chemistry. Appl. Surf. Sci. 2004, 223, 188–195. https://doi.org/10.1016/S0169-4332(03)00912-7.

  • 31.

    Park, J.; Kim, H.S.; Lee, W.B.; et al. Trends and Outlook of Computational Chemistry and Microkinetic Modeling for Catalytic Synthesis of Methanol and DME. Catalysts 2020, 10, 655. https://doi.org/10.3390/catal10060655.

  • 32.

    Chen, B.W.J.; Zhang, X.L.; Zhang, J. Accelerating explicit solvent models of heterogeneous catalysts with machine learning interatomic potentials. Chem. Sci. 2023, 14, 8338–8354. https://doi.org/10.1039/d3sc02482b.

  • 33.

    Lele, A.D.; Shi, Z.Y.; Khetan, S.; et al. Machine-Learned Force Field for Molecular Dynamics Simulations of Nonequilibrium Ammonia Synthesis on Iron Catalysts. J. Phys. Chem. C 2025, 129, 4937–4949. https://doi.org/10.1021/acs.jpcc.4c07596.

  • 34.

    Pisal, P.; Krejcí, O.; Rinke, P. Machine learning accelerated descriptor design for catalyst discovery in CO2 to methanol conversion. NPJ Comput. Mater. 2025, 11, 213. https://doi.org/10.1038/s41524-025-01664-9.

  • 35.

    Schaaf, L.L.; Fako, E.; De, S.; et al. Accurate energy barriers for catalytic reaction pathways: An automatic training protocol for machine learning force fields. NPJ Comput. Mater. 2023, 9, 180. https://doi.org/10.1038/s41524-023-01124-2.

  • 36.

    Wu, S.L.; Zheng, S.S.; Zhang, W.T.; et al. Machine-learning prediction of facet-dependent CO coverage on Cu electrocatalysts. J. Mater. Inform. 2025, 5, 14. https://doi.org/10.20517/jmi.2024.77.

  • 37.

    Botu, V.; Batra, R.; Chapman, J.; et al. Machine Learning Force Fields: Construction, Validation, and Outlook. J. Phys. Chem. C 2017, 121, 511–522. https://doi.org/10.1021/acs.jpcc.6b10908.

  • 38.

    Zhang, J.K.; Li, Y.P.; Chen, M.; et al. Atomistic simulation of batteries via machine learning force fields: From bulk to interface. J. Energy Chem. 2025, 106, 911–929. https://doi.org/10.1016/j.jechem.2025.02.051.

  • 39.

    Behler, J.; Parrinello, M. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces. Phys. Rev. Lett. 2007, 98, 146401. https://doi.org/10.1103/PhysRevLett.98.146401.

  • 40.

    Alder, B.J.; Wainwright, T.E. Studies in Molecular Dynamics. I. General Method. J. Chem. Phys. 1959, 31, 459–466. https://doi.org/10.1063/1.1730376.

  • 41.

    Peslherbe, G.H.; Hase, W.L. Semiempirical MNDO, AM1, and PM3 direct dynamics trajectory studies of formaldehyde unimolecular dissociation. J. Chem. Phys. 1996, 104, 7882–7894. https://doi.org/10.1063/1.471504.

  • 42.

    Omranpour, A.; Elsner, J.; Lausch, K.N.; et al. Machine Learning Potentials for Heterogeneous Catalysis. ACS Catal. 2025, 15, 1616–1634. https://doi.org/10.1021/acscatal.4c06717.

  • 43.

    Payne, M.C.; Teter, M.P.; Allan, D.C.; et al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097. https://doi.org/10.1103/RevModPhys.64.1045.

  • 44.

    Car, R.; Parrinello, M. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett. 1985, 55, 2471–2474. https://doi.org/10.1103/PhysRevLett.55.2471.

  • 45.

    Remler, D.K.; Madden, P.A. Molecular dynamics without effective potentials via the Car-Parrinello approach. Mol. Phys. 1990, 70, 921–966. https://doi.org/10.1080/00268979000101451.

  • 46.

    Thiel, W. Semiempirical quantum–chemical methods. WIREs Comput. Mol. Sci. 2014, 4, 145–157. https://doi.org/10.1002/wcms.1161.

  • 47.

    Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; et al. Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107, 3902–3909. https://doi.org/10.1021/ja00299a024.

  • 48.

    Stewart, J.J.P. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 1989, 10, 209–220. https://doi.org/10.1002/jcc.540100208.

  • 49.

    Elstner, M.; Porezag, D.; Jungnickel, G.; et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268. https://doi.org/10.1103/PhysRevB.58.7260.

  • 50.

    Cornell, W.D.; Cieplak, P.; Bayly, C.I.; et al. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179−5197. https://doi.org/10.1021/ja955032e.

  • 51.

    Chenoweth, K.; van Duin, A.C.T.; Goddard, W.A. ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation. J. Phys. Chem. A 2008, 112, 1040–1053. https://doi.org/10.1021/jp709896w.

  • 52.

    Halgren, T.A.; Damm, W. Polarizable force fields. Curr. Opin. Struct. Biol. 2001, 11, 236–242. https://doi.org/10.1016/S0959-440X(00)00196-2.

  • 53.

    Ponder, J.W.; Case, D.A. Force Fields for Protein Simulations. In Advances in Protein Chemistry; Academic Press: Cambridge, MA, USA, 2003; Volume 66, pp. 27–85.

  • 54.

    Behler, J. Constructing high-dimensional neural network potentials: A tutorial review. Int. J. Quantum Chem. 2015, 115, 1032–1050. https://doi.org/10.1002/qua.24890.

  • 55.

    Bartók, A.P.; Payne, M.C.; Kondor, R.; et al. Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons. Phys. Rev. Lett. 2010, 104, 136403. https://doi.org/10.1103/PhysRevLett.104.136403.

  • 56.

    Xia, J.; Yaolong, Z.; Jiang, B. The evolution of machine learning potentials for molecules, reactions and materials. Chem. Soc. Rev. 2025, 54, 4790–4821. https://doi.org/10.1039/d5cs00104h.

  • 57.

    Schütt, K.T.; Sauceda, H.E.; Kindermans, P.J.; et al. SchNet—A deep learning architecture for molecules and materials. J. Chem. Phys. 2018, 148, 241722. https://doi.org/10.1063/1.5019779.

  • 58.

    Dai, M.; Demirel, M.F.; Liang, Y.; et al. Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials. NPJ Comput. Mater. 2021, 7, 103. https://doi.org/10.1038/s41524-021-00574-w.

  • 59.

    Frank, J.T.; Unke, O.; Müller, K.-R. So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems. Adv. Neural Inf. Process. Syst. 2022, 35, 29400–29413.

  • 60.

    Jain, A.; Ong, S.P.; Hautier, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. https://doi.org/10.1063/1.4812323.

  • 61.

    Unke, O.T.; Chmiela, S.; Sauceda, H.E.; et al. Machine Learning Force Fields. Chem. Rev. 2021, 121, 10142–10186. https://doi.org/10.1021/acs.chemrev.0c01111.

  • 62.

    Behler, J. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys. 2011, 134, 074106. https://doi.org/10.1063/1.3553717.

  • 63.

    Bartók, A.P.; Kondor, R.; Csányi, G. On representing chemical environments. Phys. Rev. B 2013, 87, 184115. https://doi.org/10.1103/PhysRevB.87.184115.

  • 64.

    Deringer, V.L.; Csányi, G. Machine learning based interatomic potential for amorphous carbon. Phys. Rev. B 2017, 95, 094203. https://doi.org/10.1103/PhysRevB.95.094203.

  • 65.

    Vandermause, J.; Torrisi, S.B.; Batzner, S.; et al. On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events. NPJ Comput. Mater. 2020, 6, 20. https://doi.org/10.1038/s41524-020-0283-z.

  • 66.

    Schütt, K.T.; Kessel, P.; Gastegger, M.; et al. SchNetPack: A Deep Learning Toolbox For Atomistic Systems. J. Chem. Theory Comput. 2019, 15, 448–455. https://doi.org/10.1021/acs.jctc.8b00908.

  • 67.

    Thomas, N.; Smidt, T.E.; Kearnes, S.M.; et al. Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks for 3D Point Clouds. arXiv 2018, arXiv:1802.08219.

  • 68.

    Musil, F.; Grisafi, A.; Bartók, A.P.; et al. Physics-Inspired Structural Representations for Molecules and Materials. Chem. Rev. 2021, 121, 9759–9815. https://doi.org/10.1021/acs.chemrev.1c00021.

  • 69.

    Musaelian, A.; Batzner, S.; Johansson, A.; et al. Learning local equivariant representations for large-scale atomistic dynamics. Nat. Commun. 2023, 14, 579. https://doi.org/10.1038/s41467-023-36329-y.

  • 70.

    Batatia, I.; Batzner, S.; Kovács, D.P.; et al. The design space of E(3)-equivariant atom-centred interatomic potentials. Nat. Mach. Intell. 2025, 7, 56–67. https://doi.org/10.1038/s42256-024-00956-x.

  • 71.

    Nomura, K.i.; Hattori, S.; Ohmura, S.; et al. Allegro-FM: Toward an Equivariant Foundation Model for Exascale Molecular Dynamics Simulations. J. Phys. Chem. Lett. 2025, 16, 6637–6644.

  • 72.

    Liao, Y.; Smidt, T.E.J.A. Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs. arXiv 2022, arXiv:2206.11990.

  • 73.

    Zitnick, C.L.; Das, A.; Kolluru, A.; et al. Spherical Channels for Modeling Atomic Interactions. Adv. Neural Inf. Process. Syst. 2022, 35, 8054–8067.

  • 74.

    Vaswani, A.; Shazeer, N.; Parmar, N.; et al. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010.

  • 75.

    Schütt, K.T.; Unke, O.T.; Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021.

  • 76.

    Kovács, D.P.; Moore, J.H.; Browning, N.J.; et al. MACE-OFF: Short-Range Transferable Machine Learning Force Fields for Organic Molecules. J. Am. Chem. Soc. 2025, 147, 17598–17611. https://doi.org/10.1021/jacs.4c07099.

  • 77.

    Batatia, I.; Benner, P.; Chiang, Y.; et al. A foundation model for atomistic materials chemistry. J. Chem. Phys. 2025, 163, 184110. https://doi.org/10.1063/5.0297006.

  • 78.

    Chen, C.; Ong, S.P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2022, 2, 718–728. https://doi.org/10.1038/s43588-022-00349-3.

  • 79.

    Liao, Y.-L.; Wood, B.; Das, A.; et al. EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations. arXiv 2023, arXiv:2306.12059.

  • 80.

    Tran, R.; Lan, J.; Shuaibi, M.; et al. The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts. ACS Catal. 2023, 13, 3066–3084. https://doi.org/10.1021/acscatal.2c05426.

  • 81.

    Dunn, A.; Wang, Q.; Ganose, A.; et al. Benchmarking materials property prediction methods: The Matbench test set and Automatminer reference algorithm. NPJ Comput. Mater. 2020, 6, 138. https://doi.org/10.1038/s41524-020-00406-3.

  • 82.

    Wang, H.; Zhang, L.; Han, J.; et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 2018, 228, 178–184. https://doi.org/10.1016/j.cpc.2018.03.016.

  • 83.

    Gao, X.; Ramezanghorbani, F.; Isayev, O.; et al. TorchANI: A Free and Open Source PyTorch-Based Deep Learning Implementation of the ANI Neural Network Potentials. J. Chem. Inf. Model 2020, 60, 3408–3415. https://doi.org/10.1021/acs.jcim.0c00451.

  • 84.

    Batatia, I.; Kovacs, D.; Simm, G.; et al. MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields. Adv. Neural Inf. Process. Syst. 2022, 35, 11423–11436.

  • 85.

    Vandermause, J.; Xie, Y.; Lim, J.S.; et al. Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt. Nat. Commun. 2022, 13, 5183. https://doi.org/10.1038/s41467-022-32294-0.

  • 86.

    Zhang, L.; Lin, D.-Y.; Wang, H.; et al. Active learning of uniformly accurate interatomic potentials for materials simulation. Phys. Rev. Mater. 2019, 3, 023804. https://doi.org/10.1103/PhysRevMaterials.3.023804.

  • 87.

    Chmiela, S.; Tkatchenko, A.; Sauceda, H.E.; et al. Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 2017, 3, e1603015. https://doi.org/10.1126/sciadv.1603015.

  • 88.

    Chmiela, S.; Sauceda, H.E.; Poltavsky, I.; et al. sGDML: Constructing accurate and data efficient molecular force fields using machine learning. Comput. Phys. Commun. 2019, 240, 38–45. https://doi.org/10.1016/j.cpc.2019.02.007.

  • 89.

    Kapil, V.; Rossi, M.; Marsalek, O.; et al. i-PI 2.0: A universal force engine for advanced molecular simulations. Comput. Phys. Commun. 2019, 236, 214–223. https://doi.org/10.1016/j.cpc.2018.09.020.

  • 90.

    Hjorth Larsen, A.; Jørgen Mortensen, J.; Blomqvist, J.; et al. The atomic simulation environment-a Python library for working with atoms. J. Phys. Condens. Matter Inst. Phys. J. 2017, 29, 273002. https://doi.org/10.1088/1361-648X/aa680e.

  • 91.

    Deelman, E.; Gannon, D.; Shields, M.; et al. Workflows and e-Science: An overview of workflow system features and capabilities. Future Gener. Comput. Syst. 2009, 25, 528–540. https://doi.org/10.1016/j.future.2008.06.012.

  • 92.

    Ong, S.P.; Richards, W.D.; Jain, A.; et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 2013, 68, 314–319. https://doi.org/10.1016/j.commatsci.2012.10.028.

  • 93.

    Chanussot, L.; Das, A.; Goyal, S.; et al. Open Catalyst 2020 (OC20) Dataset and Community Challenges. ACS Catal. 2021, 11, 6059–6072. https://doi.org/10.1021/acscatal.0c04525.

  • 94.

    Tran, K.; Ulissi, Z.W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 2018, 1, 696–703. https://doi.org/10.1038/s41929-018-0142-1.

  • 95.

    Choung, S.; Park, W.; Moon, J.; et al. Rise of machine learning potentials in heterogeneous catalysis: Developments, applications, and prospects. Chem. Eng. J. 2024, 494, 152757. https://doi.org/10.1016/j.cej.2024.152757.

  • 96.

    Agarwal, T.; Kumar, N.; Ritu; et al. Homogeneous HER electrocatalysis using monothiolate ligand-based {FeS} complexes: A review. Electrochim. Acta 2024, 507, 144852. https://doi.org/10.1016/j.electacta.2024.144852.

  • 97.

    Lin, Y.W.; Li, Y.S.; Chang, C.W.; et al. Kinetic Analysis of Oxygen Evolution on Spin-Coated Thin-Film Electrodes via Electrochemical Impedance Spectroscopy. Coatings 2023, 13, 1957. https://doi.org/10.3390/coatings13111957.

  • 98.

    He, Y.Z.; Liu, S.S.; Wang, M.F.; et al. Advancing the Electrochemistry of Gas-Involved Reactions through Theoretical Calculations and Simulations from Microscopic to Macroscopic. Adv. Funct. Mater. 2022, 32, 2208474. https://doi.org/10.1002/adfm.202208474.

  • 99.

    Chen, M.P.; Smart, T.J.J.; Wang, S.W.; et al. The coupling of experiments with density functional theory in the studies of the electrochemical hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 8783–8812. https://doi.org/10.1039/d0ta02549f.

  • 100.

    Tu, Y.C.; Deng, J.; Ma, C.; et al. Double-layer hybrid chainmail catalyst for high-performance hydrogen evolution. Nano Energy 2020, 72, 104700. https://doi.org/10.1016/j.nanoen.2020.104700.

  • 101.

    Rice, P.S.; Liu, Z.P.; Hu, P. Hydrogen Coupling on Platinum Using Artificial Neural Network Potentials and DFT. J. Phys. Chem. Lett. 2021, 12, 10637–10645. https://doi.org/10.1021/acs.jpclett.1c02998.

  • 102.

    Zhao, X.; Xiao, S.J.; Yao, B.M.; et al. DFT-Based Mechanistic Exploration and Application in Photocatalytic Heterojunctions. J. Chem. Theory Comput. 2024, 20, 9770–9786. https://doi.org/10.1021/acs.jctc.4c01051.

  • 103.

    Sharma, V.; Roondhe, B.; Saxena, S.; et al. Role of functionalized graphene quantum dots in hydrogen evolution reaction: A density functional theory study. Int. J. Hydrogen Energy 2022, 47, 41748–41758. https://doi.org/10.1016/j.ijhydene.2022.02.161.

  • 104.

    Zhang, X.X.; Wang, L.; Xie, Y.; et al. Theoretical insights into performance descriptors and their impact on activity optimization strategies for cobalt-based electrocatalysts. Coord. Chem. Rev. 2025, 533, 216560. https://doi.org/10.1016/j.ccr.2025.216560.

  • 105.

    Özönder, S.; Küçükkartal, H.K. Rapid Discovery of Graphene Nanoflakes with Desired Absorption Spectra Using DFT and Bayesian Optimization with Neural Network Kernel. J. Phys. Chem. A 2025, 129, 4591–4600. https://doi.org/10.1021/acs.jpca.5c00405.

  • 106.

    Chakraborty, T.; Chattaraj, P.K. Density functional theory for exploration of chemical reactivity: Successes and limitations. J. Phys. Org. Chem. 2023, 36, e4589. https://doi.org/10.1002/poc.4589.

  • 107.

    Aidhy, D.S.; Zhang, Y.S.; Wolverton, C. Prediction of a Ca(BH4)(NH2) quaternary hydrogen storage compound from first-principles calculations. Phys. Rev. B 2011, 84, 134103. https://doi.org/10.1103/PhysRevB.84.134103.

  • 108.

    Morawietz, T.; Singraber, A.; Dellago, C.; et al. How van der Waals interactions determine the unique properties of water. Proc. Natl. Acad. Sci. USA 2016, 113, 8368–8373. https://doi.org/10.1073/pnas.1602375113.

  • 109.

    Abbas, H.G.; Hahn, J.R. Machine Learning-Predicted Ternary Molybdenum Chalcogenophosphides for High-Efficiency Hydrogen Evolution Catalysis. J. Phys. Chem. C 2025, 129, 322–331. https://doi.org/10.1021/acs.jpcc.4c06879.

  • 110.

    Hu, X.; Li, Q.; Li, W.; et al. Spin-polarized binuclear transition metal doping on g-C₃N₄ for photocatalytic CO₂ reduction to C2 products: A DFT study. Mol. Catal. 2025, 572, 114798. https://doi.org/10.1016/j.mcat.2024.114798.

  • 111.

    Liu, R.; Li, X.; Lam, K.S. Combinatorial chemistry in drug discovery. Curr. Opin. Chem. Biol. 2017, 38, 117–126. https://doi.org/10.1016/j.cbpa.2017.03.017.

  • 112.

    Karthikeyan, A.; Priyakumar, U.D. Artificial intelligence: Machine learning for chemical sciences. J. Chem. Sci. 2022, 134, 2. https://doi.org/10.1007/s12039-021-01995-2.

  • 113.

    Jorner, K. Putting Chemical Knowledge to Work in Machine Learning for Reactivity. Chimia 2023, 77, 22–30. https://doi.org/10.2533/chimia.2023.22.

  • 114.

    Selvaratnam, B.; Koodali, R.T. Machine learning in experimental materials chemistry. Catal. Today 2021, 371, 77–84. https://doi.org/10.1016/j.cattod.2020.07.074.

  • 115.

    Debe, M.K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51. https://doi.org/10.1038/nature11115.

  • 116.

    Xue, D.; Yuan, Y.; Yu, Y.; et al. Spin occupancy regulation of the Pt d-orbital for a robust low-Pt catalyst towards oxygen reduction. Nat. Commun. 2024, 15, 5990. https://doi.org/10.1038/s41467-024-50332-x.

  • 117.

    Jeong, C.; Lee, J.; Jo, H.; et al. Atomic-scale 3D structural dynamics and functional degradation of Pt alloy nanocatalysts during the oxygen reduction reaction. Nat. Commun. 2025, 16, 8026. https://doi.org/10.1038/s41467-025-63448-5.

  • 118.

    Zheng, S.; Zhang, X.-M.; Liu, H.-S.; et al. Active phase discovery in heterogeneous catalysis via topology-guided sampling and machine learning. Nat. Commun. 2025, 16, 2542. https://doi.org/10.1038/s41467-025-57824-4.

  • 119.

    Smith, J.S.; Nebgen, B.; Lubbers, N.; et al. Less is more: Sampling chemical space with active learning. J. Chem. Phys. 2018, 148, 241733. https://doi.org/10.1063/1.5023802.

  • 120.

    Korolev, V.V.; Mitrofanov, A.; Marchenko, E.I.; et al. Transferable and Extensible Machine Learning-Derived Atomic Charges for Modeling Hybrid Nanoporous Materials. Chem. Mater. 2020, 32, 7822–7831. https://doi.org/10.1021/acs.chemmater.0c02468.

  • 121.

    Chmiela, S.; Vassilev-Galindo, V.; Unke, O.T.; et al. Accurate global machine learning force fields for molecules with hundreds of atoms. Sci. Adv. 2023, 9, eadf0873. https://doi.org/10.1126/sciadv.adf0873.

  • 122.

    Miller, R.E.; Tadmor, E.B. A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model. Simul. Mater. Sci. Eng. 2009, 17, 053001. https://doi.org/10.1088/0965-0393/17/5/053001.

  • 123.

    Grisafi, A.; Ceriotti, M. Incorporating long-range physics in atomic-scale machine learning. J. Chem. Phys. 2019, 151, 204105. https://doi.org/10.1063/1.5128375.

  • 124.

    Welborn, M.; Cheng, L.; Miller, T.F., III. Transferability in Machine Learning for Electronic Structure via the Molecular Orbital Basis. J. Chem. Theory Comput. 2018, 14, 4772–4779. https://doi.org/10.1021/acs.jctc.8b00636.

Share this article:
How to Cite
Hu, X.; Wang, G.; Wen, C.; Sa, B. Driving Catalytic Innovation: The Development and Application of Machine Learning Force Fields. AI for Materials 2026, 1 (1), 5.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.