2601002927
  • Open Access
  • Review

Advances in Machine Learning Potentials for Mineral Physics at High Pressure and High Temperature

  • Lei Wan 1,2,   
  • Yunguo Li 1,2,*

Received: 06 Nov 2025 | Revised: 17 Jan 2026 | Accepted: 26 Jan 2026 | Published: 02 Feb 2026

Abstract

Understanding the composition and physical properties of Earth’s deep interior is fundamental to deciphering planetary evolution, yet modeling these systems under extreme pressure–temperature (P–T) conditions remains a significant challenge. While first-principles simulations based on density functional theory (DFT) offer high accuracy, their prohibitive computational costs typically restrict studies to small scales and short timescales. Recently, machine learning potentials (MLPs) have emerged as a transformative bridge, providing near-first-principles fidelity at a fraction of the cost and enabling large-scale simulations of complex materials under deep-Earth conditions. This review synthesizes recent progress in applying MLPs to high P–T mineral physics, focusing on breakthroughs in modeling thermodynamic, transport, and elastic properties. We discuss methodological hurdles in extending MLPs across broad P–T ranges and evaluate emerging strategies—such as active learning, uncertainty quantification and temperature-dependent training—to overcome them. By uncovering phenomena like superionic conduction and defect-controlled behavior, MLPs are shifting our perspective of the deep Earth from idealized models toward complex, dynamic systems, paving the way for a predictive, data-driven era in mineral physics. 

References 

  • 1.

    Pearson, D.G.; Brenker, F.E.; Nestola, F.; et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 2014, 507, 221–224. https://doi.org/10.1038/nature13080.

  • 2.

    Gu, T.T.; Pamato, M.G.; Novella, D.; et al. Hydrous peridotitic fragments of Earth’s mantle 660 km discontinuity sampled by a diamond. Nat. Geosci. 2022, 15, 950–954. https://doi.org/10.1038/s41561-022-01024-y.

  • 3.

    Dziewonski, A.M.; Anderson, D.L. Preliminary Reference Earth Model. Phys. Earth Planet. Inter. 1981, 25, 297–356. https://doi.org/10.1016/0031-9201(81)90046-7.

  • 4.

    Stixrude, L.; de Koker, N.; Sun, N.; et al. Thermodynamics of silicate liquids in the deep Earth. Earth Planet. Sci. Lett. 2009, 278, 226–232. https://doi.org/10.1016/j.epsl.2008.12.006.

  • 5.

    Katsura, T. A Revised Adiabatic Temperature Profile for the Mantle. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023562. https://doi.org/10.1029/2021JB023562.

  • 6.

    Alfè, D.; Gillan, M.J.; Price, G.D. Temperature and composition of the Earth’s core. Contemp. Phys. 2007, 48, 63–80. https://doi.org/10.1080/00107510701529653.

  • 7.

    Yamazaki, D.; Ito, E.; Yoshino, T.; et al. Over 1 Mbar generation in the Kawai-type multianvil apparatus and its application to compression of (Mg0.92Fe0.08)SiO3 perovskite and stishovite. Phys. Earth Planet. Inter. 2014, 228, 262–267. https://doi.org/10.1016/j.pepi.2014.01.013.

  • 8.

    Irifune, T. Review Series to Celebrate Our 100th Volume Kawai-type multianvil ultrahigh-pressure technology. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2024, 100, 149–164. https://doi.org/10.2183/pjab.100.013.

  • 9.

    Ishii, T.; Liu, Z.D.; Katsura, T. A Breakthrough in Pressure Generation by a Kawai-Type Multi-Anvil Apparatus with Tungsten Carbide Anvils. Engineering 2019, 5, 434–440. https://doi.org/10.1016/j.eng.2019.01.013.

  • 10.

    Bondar, D.; Fei, H.Z.; Withers, A.C.; et al. A rapid-quench technique for multi-anvil high-pressure-temperature experiments. Rev. Sci. Instrum. 2020, 91, 065105. https://doi.org/10.1063/5.0005936.

  • 11.

    Gion, A.M.; Gaillard, F.; Freslon, N.; et al. A method for the direct analysis of quenched, magmatic-hydrothermal fluids recovered from high-pressure, high-temperature experiments. Chem. Geol. 2022, 609, 121061. https://doi.org/10.1016/j.chemgeo.2022.121061.

  • 12.

    Gillan, M.J.; Alfè, D.; Brodholt, J.; et al. First-principles modelling of Earth and planetary materials at high pressures and temperatures. Rep. Prog. Phys. 2006, 69, 2365–2441. https://doi.org/10.1088/0034-4885/69/8/R03.

  • 13.

    Alfè, D.; Gillan, M.J. First-principles calculation of transport coefficients. Phys. Rev. Lett. 1998, 81, 5161–5164. https://doi.org/10.1103/PhysRevLett.81.5161.

  • 14.

    Oganov, A.R.; Brodholt, J.P.; Price, G.D. Ab initio elasticity and thermal equation of state of MgSiO3 perovskite. Earth Planet. Sci. Lett. 2001, 184, 555–560. https://doi.org/10.1016/S0012-821x(00)00363-0.

  • 15.

    Sun, T.; Brodholt, J.P.; Li, Y.G.; et al. Melting properties from free energy calculations: Iron at the Earth’s inner-core boundary. Phys. Rev. B 2018, 98, 224301. https://doi.org/10.1103/PhysRevB.98.224301.

  • 16.

    Li, Y.G.; Vočadlo, L.; Sun, T.; et al. The Earth’s core as a reservoir of water. Nat. Geosci. 2020, 13, 453–458. https://doi.org/10.1038/s41561-020-0578-1.

  • 17.

    Li, Y.G.; Vočadlo, L.; Ballentine, C.; et al. Primitive noble gases sampled from ocean island basalts cannot be from the Earth’s core. Nat. Commun. 2022, 13, 3770. https://doi.org/10.1038/s41467-022-31588-7.

  • 18.

    Huang, D.; Li, Y.; Khan, A.; et al. Thermoelastic Properties of Liquid Fe-rich Alloys Under Martian Core Conditions. Geophys. Res. Lett. 2023, 50, e2022GL102271. https://doi.org/10.1029/2022GL102271.

  • 19.

    Yang, H.; Dou, P.X.; Xiao, T.T.; et al. The Geophysical Properties of FeHx Phases Under Inner Core Conditions. Geophys. Res. Lett. 2023, 50, e2023GL104493. https://doi.org/10.1029/2023GL104493.

  • 20.

    Dou, P.X.; Brodholt, J.; Vočadlo, L.; et al. Ab Initio Evaluation of Point Defects in Bridgmanite Under Lower Mantle Conditions. J. Geophys. Res. Solid Earth 2025, 130, e2025JB031147. https://doi.org/10.1029/2025JB031147.

  • 21.

    Li, Y.G.; Li, C.H.; Zhou, Y.; et al. A deeper and hotter Martian core-mantle differentiation inferred from FeO partitioning. Sci. Bull. 2025, 70, 429–436. https://doi.org/10.1016/j.scib.2024.11.046.

  • 22.

    Li, Y.G.; Guo, X.; Vočadlo, L.; et al. The effect of water on the outer core transport properties. Phys. Earth Planet. Inter. 2022, 329, 106907. https://doi.org/10.1016/j.pepi.2022.106907.

  • 23.

    Huang, D.; Li, Y.; Murakami, M. Low Viscosity of Peridotite Liquid: Implications for Magma Ocean Dynamics. Geophys. Res. Lett. 2024, 51, e2023GL107608. https://doi.org/10.1029/2023GL107608.

  • 24.

    Wang, H.H.; Li, Y.G.; Zhang, L.; et al. Dynamic bonding analysis of the water diffusion mechanism in silicate melts. Phys. Rev. B 2025, 111, 104206. https://doi.org/10.1103/PhysRevB.111.104206.

  • 25.

    Huang, Y.H.; Li, Y.G.; Alfe, D.; et al. Ab Initio Study of the Conductivities of B2 FeSi Under Core-Mantle Boundary Conditions. Geophys. Res. Lett. 2025, 52, e2025GL115024. https://doi.org/10.1029/2025GL115024.

  • 26.

    Jiang, D.Y.; Xie, L.C.; Wang, L.Q. Current application status of multi-scale simulation and machine learning in research on high-entropy alloys. J. Mater. Res. Technol. JMRT 2023, 26, 1341–1374. https://doi.org/10.1016/j.jmrt.2023.07.233.

  • 27.

    Zhang, L.; Han, J.; Wang, H.; et al. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics. Phys. Rev. Lett. 2018, 120, 143001. https://doi.org/10.1103/PhysRevLett.120.143001.

  • 28.

    Friederich, P.; Häse, F.; Proppe, J.; et al. Machine-learned potentials for next-generation matter simulations. Nat. Mater. 2021, 20, 750–761. https://doi.org/10.1038/s41563-020-0777-6.

  • 29.

    Zhang, L.; Wang, H.; Car, R.; et al. Phase Diagram of a Deep Potential Water Model. Phys. Rev. Lett. 2021, 126, 236001. https://doi.org/10.1103/PhysRevLett.126.236001.

  • 30.

    Behler, J. Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations. Phys. Chem. Chem. Phys. 2011, 13, 17930–17955. https://doi.org/10.1039/c1cp21668f.

  • 31.

    Behler, J.; Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 2007, 98, 146401. https://doi.org/10.1103/PhysRevLett.98.146401.

  • 32.

    Wang, D.; Wu, Z.; Deng, X. Thermal conductivity of Fe-bearing bridgmanite and post-perovskite: Implications for the heat flux from the core. Earth Planet. Sci. Lett. 2023, 621, 118368. https://doi.org/10.1016/j.epsl.2023.118368.

  • 33.

    Li, Z.; Scandolo, S. Deep-learning interatomic potential for iron at extreme conditions. Phys. Rev. B 2024, 109, 184108. https://doi.org/10.1103/PhysRevB.109.184108.

  • 34.

    Li, Z.; Scandolo, S. Elasticity and Viscosity of hcp Iron at Earth’s Inner Core Conditions From Machine Learning-Based Large-Scale Atomistic Simulations. Geophys. Res. Lett. 2022, 49, e2022GL101161. https://doi.org/10.1029/2022GL101161.

  • 35.

    Zhang, Z.G.; Csányi, G.; Alfè, D. Partitioning of sulfur between solid and liquid iron under Earth’s core conditions: Constraints from atomistic simulations with machine learning potentials. Geochim. Cosmochim. Acta 2020, 291, 5–18. https://doi.org/10.1016/j.gca.2020.03.028.

  • 36.

    Zhang, Z.; Wang, W.; Liu, J.; et al. Oxygen Driving Hydrogen Into the Inner Core: Implications for the Earth’s Core Composition. Geophys. Res. Lett. 2025, 52, e2024GL110315. https://doi.org/10.1029/2024GL110315.

  • 37.

    Wang, J.; Gao, H.; Han, Y.; et al. MAGUS: Machine learning and graph theory assisted universal structure searcher. Natl. Sci. Rev. 2023, 10, nwad128. https://doi.org/10.1093/nsr/nwad128.

  • 38.

    Zhang, Y.-W.; Sorkin, V.; Aitken, Z.H.; et al. Roadmap for the development of machine learning-based interatomic potentials. Model. Simul. Mater. Sci. Eng. 2025, 33, 023301. https://doi.org/10.1088/1361-651X/ad9d63.

  • 39.

    Bartók, A.P.; Payne, M.C.; Kondor, R.; et al. Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons. Phys. Rev. Lett. 2010, 104, 136403. https://doi.org/10.1103/PhysRevLett.104.136403.

  • 40.

    Unke, O.T.; Meuwly, M. PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges. J. Chem. Theory Comput. 2019, 15, 3678–3693. https://doi.org/10.1021/acs.jctc.9b00181.

  • 41.

    Zhang, Y.; Wang, H.; Chen, W.; et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput. Phys. Commun. 2020, 253, 107206. https://doi.org/10.1016/j.cpc.2020.107206.

  • 42.

    Deng, J.; Niu, H.; Hu, J.; et al. Melting of MgSiO3 determined by machine learning potentials. Phys. Rev. B 2023, 107, 064103. https://doi.org/10.1103/PhysRevB.107.064103.

  • 43.

    Zeni, C.; Pinsler, R.; Zügner, D.; et al. A generative model for inorganic materials design. Nature 2025, 639, 624–632. https://doi.org/10.1038/s41586-025-08628-5.

  • 44.

    Deng, B.W.; Zhong, P.C.; Jun, K.; et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 2023, 5, 1031–1041. https://doi.org/10.1038/s42256-023-00716-3.

  • 45.

    Chen, C.; Ong, S.P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2022, 2, 718–728. https://doi.org/10.1038/s43588-022-00349-3.

  • 46.

    Riebesell, J.; Goodall, R.E.A.; Benner, P.; et al. A framework to evaluate machine learning crystal stability predictions. Nat. Mach. Intell. 2025, 7, 836–847. https://doi.org/10.1038/s42256-025-01055-1.

  • 47.

    Shimizu, K.; Suhara, K.; Ikumo, M.; et al. Superconductivity in oxygen. Nature 1998, 393, 767–769. https://doi.org/10.1038/31656.

  • 48.

    Ma, Y.M.; Eremets, M.; Oganov, A.R.; et al. Transparent dense sodium. Nature 2009, 458, 182–185. https://doi.org/10.1038/nature07786.

  • 49.

    Park, I.; He, Y.; Mao, H.K.; et al. Electride Formation of HCP-Iron at High Pressure: Unraveling the Origin of the Superionic State of Iron-Rich Compounds in Rocky Planets. Adv. Sci. 2024, 11, 2308177. https://doi.org/10.1002/advs.202308177.

  • 50.

    Zhang, Y.; Gao, C.; Liu, Q.; et al. Warm dense matter simulation via electron temperature dependent deep potential molecular dynamics. Phys. Plasmas 2020, 27, 122704. https://doi.org/10.1063/5.0023265.

  • 51.

    Yuan, L.; Steinle-Neumann, G. Hydrogen distribution between the Earth’s inner and outer core. Earth Planet. Sci. Lett. 2023, 609, 118084. https://doi.org/10.1016/j.epsl.2023.118084.

  • 52.

    Wu, F.; Wu, S.; Wang, C.-Z.; et al. Melting temperature of iron under the Earth’s inner core condition from deep machine learning. Geosci. Front. 2024, 15, 101925. https://doi.org/10.1016/j.gsf.2024.101925.

  • 53.

    Li, Y.G.; Ni, H.W. MD2D: A python module for accurate determination of diffusion coefficient from molecular dynamics. Comput. Phys. Commun. 2023, 284, 108599. https://doi.org/10.1016/j.cpc.2022.108599.

  • 54.

    Eriksson, R.; Seetharaman, S. Thermal diffusivity measurements of some synthetic CaO-Al2O3-SiO2 slags. Metall. Mater. Trans. B Proc. Metall. Mater. Proc. Sci. 2004, 35, 461–469. https://doi.org/10.1007/s11663-004-0047-z.

  • 55.

    Hasegawa, H.; Hoshino, Y.; Kasamoto, T.; et al. Thermal Conductivity Measurements of Some Synthetic Al2O3-CaO-SiO2 Slags by Means of a Front-Heating and Front-Detection Laser-Flash Method. Metall. Mater. Trans. B Proc. Metall. Mater. Proc. Sci. 2012, 43, 1405–1412. https://doi.org/10.1007/s11663-012-9702-y.

  • 56.

    Kang, Y.; Morita, K. Thermal conductivity of the CaO-Al2O3-SiO2 system. ISIJ Int. 2006, 46, 420–426. https://doi.org/10.2355/isijinternational.46.420.

  • 57.

    Susa, M.; Watanabe, M.; Ozawa, S.; et al. Thermal conductivity of CaO-SiO2-Al2O3 glassy slags:: Its dependence on molar ratios of Al2O3/CaO and SiO2/Al2O3. Ironmak. Steelmak. 2007, 34, 124–130. https://doi.org/10.1179/174328107x165672.

  • 58.

    Fei, H.Z.; Yamazaki, D.; Sakurai, M.; et al. A nearly water-saturated mantle transition zone inferred from mineral viscosity. Sci. Adv. 2017, 3, e1603024. https://doi.org/10.1126/sciadv.1603024.

  • 59.

    Wang, D.; Wu, Z.; Deng, X. Thermal Conductivity of Hydrous Wadsleyite Determined by Non-Equilibrium Molecular Dynamics Based on Machine Learning. Geophys. Res. Lett. 2022, 49, e2022GL100337. https://doi.org/10.1029/2022GL100337.

  • 60.

    Chang, Y.Y.; Hsieh, W.P.; Tan, E.; et al. Hydration-reduced lattice thermal conductivity of olivine in Earth’s upper mantle. Proc. Natl. Acad. Sci. USA 2017, 114, 4078–4081. https://doi.org/10.1073/pnas.1616216114.

  • 61.

    Marzotto, E.; Hsieh, W.P.; Ishii, T.; et al. Effect of Water on Lattice Thermal Conductivity of Ringwoodite and Its Implications for the Thermal Evolution of Descending Slabs. Geophys. Res. Lett. 2020, 47, e2020GL087607. https://doi.org/10.1029/2020GL087607.

  • 62.

    Deng, J.; Stixrude, L. Thermal Conductivity of Silicate Liquid Determined by Machine Learning Potentials. Geophys. Res. Lett. 2021, 48, e2021GL093806. https://doi.org/10.1029/2021GL093806.

  • 63.

    Peng, Y.; Deng, J. Thermal Conductivity of MgSiO3-H2O System Determined by Machine Learning Potentials. Geophys. Res. Lett. 2024, 51, e2023GL107245. https://doi.org/10.1029/2023GL107245.

  • 64.

    Deng, J. Large-Scale Atomistic Simulations of Magnesium Oxide Exsolution Driven by Machine Learning Potentials: Implications for the Early Geodynamo. Geophys. Res. Lett. 2024, 51, e2024GL109793. https://doi.org/10.1029/2024GL109793.

  • 65.

    Luo, H.; Karki, B.B.; Ghosh, D.B.; et al. Anomalous Behavior of Viscosity and Electrical Conductivity of MgSiO3 Melt at Mantle Conditions. Geophys. Res. Lett. 2021, 48, e2021GL093573. https://doi.org/10.1029/2021GL093573.

  • 66.

    Peng, Y.; Deng, J. Hydrogen Diffusion in the Lower Mantle Revealed by Machine Learning Potentials. J. Geophys. Res. Solid Earth 2024, 129, e2023JB028333. https://doi.org/10.1029/2023JB028333.

  • 67.

    Li, J.; Lin, Y.; Meier, T.; et al. Silica-water superstructure and one-dimensional superionic conduit in Earth’s mantle. Sci. Adv. 2023, 9, eadh3784. https://doi.org/10.1126/sciadv.adh3784.

  • 68.

    Reid, J.E.; Suzuki, A.; Funakoshi, K.I.; et al. The viscosity of CaMgSi2O6 liquid at pressures up to 13 GPa. Phys. Earth Planet. Inter. 2003, 139, 45–54. https://doi.org/10.1016/S0031-9201(03)00143-2.

  • 69.

    Behrens, H.; Schulze, F. Pressure dependence of melt viscosity in the system NaAlSi3O8-CaMgSi2O6. Am. Miner. 2003, 88, 1351–1363. https://doi.org/10.2138/am-2003-8-919.

  • 70.

    Suzuki, A.; Ohtani, E.; Terasaki, H.; et al. Viscosity of silicate melts in CaMgSi2O6-NaAlSi2O6 system at high pressure. Phys. Chem. Miner. 2005, 32, 140–145. https://doi.org/10.1007/s00269-005-0452-0.

  • 71.

    Spice, H.; Sanloup, C.; Cochain, B.; et al. Viscosity of liquid fayalite up to 9 GPa. Geochim. Cosmochim. Acta 2015, 148, 219–227. https://doi.org/10.1016/j.gca.2014.09.022.

  • 72.

    Liebske, C.; Schmickler, B.; Terasaki, H.; et al. Viscosity of peridotite liquid up to 13 GPa: Implications for magma ocean viscosities. Earth Planet. Sci. Lett. 2005, 240, 589–604. https://doi.org/10.1016/j.epsl.2005.10.004.

  • 73.

    Cochain, B.; Sanloup, C.; Leroy, C.; et al. Viscosity of mafic magmas at high pressures. Geophys. Res. Lett. 2017, 44, 818–826. https://doi.org/10.1002/2016gl071600.

  • 74.

    Luo, C.; Sun, Y.; Wentzcovitch, R.M. Probing the state of hydrogen in δ−AlOOH at mantle conditions with machine learning potential. Phys. Rev. Res. 2024, 6, 013292. https://doi.org/10.1103/PhysRevResearch.6.013292.

  • 75.

    Peng, Y.; Yoshino, T.; Deng, J. Grain boundary diffusion cannot explain the W isotope heterogeneities of the deep mantle. Nat. Commun. 2025, 16, 1866. https://doi.org/10.1038/s41467-025-57120-1.

  • 76.

    Li, Z.; Scandolo, S. Short-range order stabilizes a cubic iron alloy in Earth’s inner core. Nat. Commun. 2025, 16, 7574. https://doi.org/10.1038/s41467-025-62666-1.

  • 77.

    Zhang, Y.; Wang, W.; Li, Y.; et al. Superionic iron hydride shapes ultralow-velocity zones at Earth’s core–mantle boundary. Proc. Natl. Acad. Sci. USA 2024, 121, e2406386121. https://doi.org/10.1073/pnas.2406386121.

  • 78.

    Zhang, C.; Yang, J.-Y.; Sun, T.; et al. Strong precursor softening in cubic CaSiO3 perovskite. Proc. Natl. Acad. Sci. USA 2025, 122, e2410910122. https://doi.org/10.1073/pnas.2410910122.

  • 79.

    Knittle, E.; Jeanloz, R. Melting Curve of (Mg,Fe)SiO3 Perovskite to 96 GPa—Evidence for a Structural Transition in Lower Mantle Melts. Geophys. Res. Lett. 1989, 16, 421–424. https://doi.org/10.1029/GL016i005p00421.

  • 80.

    Heinz, D.L.; Jeanloz, R. Measurement of the Melting Curve of Mg0.9Fe0.1SiO3 at Lower Mantle Conditions and Its Geophysical Implications. J. Geophys. Res. Solid Earth and Planets 1987, 92, 11437–11444. https://doi.org/10.1029/JB092iB11p11437.

  • 81.

    Akins, J.A.; Luo, S.N.; Asimow, P.D.; et al. Shock-induced melting of MgSiO3 perovskite and implications for melts in Earth’s lowermost mantle. Geophys. Res. Lett. 2004, 31, L14612. https://doi.org/10.1029/2004gl020237.

  • 82.

    Shen, G.Y.; Lazor, P. Measurement of Melting Temperatures of Some Minerals under Lower Mantle Pressures. J. Geophys. Res. Solid Earth 1995, 100, 17699–17713. https://doi.org/10.1029/95jb01864.

  • 83.

    Ito, E.; Katsura, T. Melting of Ferromagnesian Silicates Under the Lower Mantle Conditions. In High-Pressure Research: Application to Earth and Planetary Sciences, 1st ed.; Syono, Y., Manghnani, M.H., Eds.; American Geophysical Union: Washington, DC, USA, 1992; pp. 315–322. https://doi.org/10.1029/GM067p0315.

  • 84.

    Zerr, A.; Boehler, R. Melting of (Mg,Fe)SiO3-perovskite to 625 Kilobars—Indication of a High-Melting Temperature in the Lower Mantle. Science 1993, 262, 553–555. https://doi.org/10.1126/science.262.5133.553.

  • 85.

    Stixrude, L.; Karki, B. Structure and freezing of MgSiO3 liquid in Earth’s lower mantle. Science 2005, 310, 297–299. https://doi.org/10.1126/science.1116952.

  • 86.

    Di Paola, C.; Brodholt, J.P. Modeling the melting of multicomponent systems: The case of MgSiO3 perovskite under lower mantle conditions. Sci. Rep. 2016, 6, 29830. https://doi.org/10.1038/srep29830.

  • 87.

    Liu, Z.J.; Zhang, C.R.; Sun, X.W.; et al. The melting curve of MgSiO3 perovskite from molecular dynamics simulation. Phys. Scr. 2011, 83, 045602. https://doi.org/10.1088/0031-8949/83/04/045602.

  • 88.

    Belonoshko, A.B.; Skorodumova, N.V.; Rosengren, A.; et al. High-pressure melting of MgSiO3. Phys. Rev. Lett. 2005, 94, 195701. https://doi.org/10.1103/PhysRevLett.94.195701.

  • 89.

    Hirose, K.; Sinmyo, R.; Sata, N.; et al. Determination of post-perovskite phase transition boundary in MgSiO3 using Au and MgO pressure standards. Geophys. Res. Lett. 2006, 33, L01310. https://doi.org/10.1029/2005gl024468.

  • 90.

    Tateno, S.; Hirose, K.; Sata, N.; et al. Determination of post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D″ layer. Earth Planet. Sci. Lett. 2009, 277, 130–136. https://doi.org/10.1016/j.epsl.2008.10.004.

  • 91.

    Wang, Z.; He, Y.; Mao, H.-K.; et al. Superionicity of oxygen-deficient davemaoite and its impact on the deep-Earth oxidation cycle. Sci. Adv. 2025, 11, eadu8401. https://doi.org/10.1126/sciadv.adu8401.

  • 92.

    Wu, F.; Sun, Y.; Wan, T.; et al. Deep-Learning-Based Prediction of the Tetragonal → Cubic Transition in Davemaoite. Geophys. Res. Lett. 2024, 51, e2023GL108012. https://doi.org/10.1029/2023GL108012.

  • 93.

    Shakya, A.; Ghosh, D.B.; Jackson, C.; et al. Insights into core-mantle differentiation from bulk Earth melt simulations. Sci. Rep. 2024, 14, 18739. https://doi.org/10.1038/s41598-024-69873-8.

  • 94.

    Luo, H.; Karki, B.B.; Ghosh, D.B.; et al. Deep neural network potentials for diffusional lithium isotope fractionation in silicate melts. Geochim. Cosmochim. Acta 2021, 303, 38–50. https://doi.org/10.1016/j.gca.2021.03.031.

  • 95.

    Luo, H.; Karki, B.B.; Ghosh, D.B.; et al. Diffusional fractionation of helium isotopes in silicate melts. Geochem. Perspect. Lett. 2021, 19, 19–22. https://doi.org/10.7185/geochemlet.2128.

Share this article:
How to Cite
Wan, L.; Li, Y. Advances in Machine Learning Potentials for Mineral Physics at High Pressure and High Temperature. AI for Materials 2026, 1 (1), 7. https://doi.org/10.53941/aimat.2026.100007.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.