- 1.
Murua, H.; Rodriguez-Marin, E.; Neilson, J.D.; et al. Fast versus Slow Growing Tuna Species: Age, Growth, and Implications for Population Dynamics and Fisheries Management. Rev. Fish Biol. Fish. 2017, 27, 733–773. https://doi.org/10.1007/s11160-017-9474-1.
- 2.
Korsmeyer, K.E.; Dewar, H.; Lai, N.C.; et al. The Aerobic Capacity of Tunas: Adaptation for Multiple Metabolic Demands. Comp. Biochem. Physiol. Part A Physiol. 1996, 113, 17–24. https://doi.org/10.1016/0300-9629(95)02061-6.
- 3.
Brill, R.W. Selective Advantages Conferred by the High Performance Physiology of Tunas, Billfishes, and Dolphin Fish. Comp. Biochem. Physiol. Part A Physiol. 1996, 113, 3–15. https://doi.org/10.1016/0300-9629(95)02064-0.
- 4.
Wu, Y.-L.; Lan, K.-W.; Evans, K.; et al. Effects of Decadal Climate Variability on Spatiotemporal Distribution of Indo-Pacific Yellowfin Tuna Population. Sci. Rep. 2022, 12, 13715. https://doi.org/10.1038/s41598-022-17882-w.
- 5.
Artetxe-Arrate, I.; Fraile, I.; Marsac, F.; et al. Chapter One—A Review of the Fisheries, Life History and Stock Structure of Tropical Tuna (Skipjack Katsuwonus Pelamis, Yellowfin Thunnus Albacares and Bigeye Thunnus Obesus) in the Indian Ocean. In Advances in Marine Biology; Sheppard, C., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 88, pp. 39–89. https://doi.org/10.1016/bs.amb.2020.09.002
- 6.
Setyadji, B.; Hartaty, H. Relative Abundance of Yellowfin Tuna Thunnus Albacares (Bonnaterre, 1788) in the Tropical Area of the North-Eastern Indian Ocean. Indian J. Fish. 2022, 69, 36–43. https://doi.org/10.21077/ijf.2022.69.4.126260-04.
- 7.
Lessa, R.; Duarte-Neto, P. Age and Growth of Yellowfin Tuna (Thunnus albacares) in the Western Equatorial Atlantic, Using Dorsal Fin Spines. Fish. Res. 2004, 69, 157–170. https://doi.org/10.1016/j.fishres.2004.05.007.
- 8.
Pecoraro, C.; Zudaire, I.; Bodin, N.; et al. Putting All the Pieces Together: Integrating Current Knowledge of the Biology, Ecology, Fisheries Status, Stock Structure and Management of Yellowfin Tuna (Thunnus albacares). Rev. Fish Biol. Fish. 2017, 27, 811–841. https://doi.org/10.1007/s11160-016-9460-z.
- 9.
Aoki, Y.; Aoki, A.; Ohta, I.; et al. Physiological and Behavioural Thermoregulation of Juvenile Yellowfin Tuna Thunnus Albacares in Subtropical Waters. Mar. Biol. 2020, 167, 71. https://doi.org/10.1007/s00227-020-03679-w.
- 10.
Lang, K.L.; Grimes, C.B.; Shaw, R.F. Variations in the Age and Growth of Yellowfin Tuna Larvae, Thunnus Albacares, Collected about the Mississippi River Plume. Environ. Biol. Fish. 1994, 39, 259–270. https://doi.org/10.1007/BF00005128.
- 11.
Masuma, S.; Takebe, T.; Sakakura, Y. A Review of the Broodstock Management and Larviculture of the Pacific Northern Bluefin Tuna in Japan. Aquaculture 2011, 315, 2–8. https://doi.org/10.1016/j.aquaculture.2010.05.030.
- 12.
Zohar, Y.; Mylonas, C.C.; Rosenfeld, H.; et al. Chapter 7—Reproduction, Broodstock Management, and Spawning in Captive Atlantic Bluefin Tuna. In Advances in Tuna Aquaculture; Benetti, D.D., Partridge, G.J., Buentello, A., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 159–188. https://doi.org/10.1016/B978-0-12-411459-3.00006-0.
- 13.
Margulies, D.; Scholey, V.P.; Wexler, J.B.; et al. Research on the Reproductive Biology and Early Life History of Yellowfin Tuna Thunnus albacares in Panama. In Advances in Tuna Aquaculture; Benetti, D.D., Partridge, G.J., Buentello, A., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 77–114. https://doi.org/10.1016/B978-0-12-411459-3.00004-7.
- 14.
Biswajit, K.B.; Amal, B.; Nadya, M.; et al. Study on the effect of broodstock diet of yellowfin tuna, Thunnus albacares on spawning performance and nutrients transition to eggs and larvae. Bull. Aquac. Res.Inst. Kindai Univ. 2020, 20, 1–16.
- 15.
Hutapea, J.H.; Setiadi, A.; Selamet, B. Maintenance and Spawning on Yellowfin Tuna Broodstock Reared in Floating Net Cage. IOP Conf. Ser. Earth Environ. Sci. 2021, 890, 012039. https://doi.org/10.1088/1755-1315/890/1/012039.
- 16.
Reglero, P.; Tugores, M.P.; Titelman, J.; et al. Bluefin Tuna (Thunnus thynnus) Larvae Exploit Rare Food Sources to Break Food Limitations in Their Warm Oligotrophic Environment. J. Plankton Res. 2025, 47, fbaf006. https://doi.org/10.1093/plankt/fbaf006.
- 17.
Pasparakis, C.; Wampler, A.N.; Lohroff, T.; et al. Characterizing the Stress Response in Juvenile Delta Smelt Exposed to Multiple Stressors. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2022, 274, 111303. https://doi.org/10.1016/j.cbpa.2022.111303.
- 18.
Komoroske, L.M.; Connon, R.E.; Lindberg, J.; et al. Ontogeny Influences Sensitivity to Climate Change Stressors in an Endangered Fish. Conserv. Physiol. 2014, 2, cou008.
- 19.
Huang, J.; Fu, Z.; Yu, W.; et al. Gut Microbiota Response to Experimental Acute Cold Stress in Juvenile Yellowfin Tuna (Thunnus albacares). J. Mar. Sci. Eng. 2025, 13, 602. https://doi.org/10.3390/jmse13030602.
- 20.
Liu, H.; Fu, Z.; Yu, G.; et al. Effects of Acute High-Temperature Stress on Physical Responses of Yellowfin Tuna (Thunnus albacares). J. Mar. Sci. Eng. 2022, 10, 1857. https://doi.org/10.3390/jmse10121857.
- 21.
Liu, H.; Yang, R.; Fu, Z.; et al. Acute Thermal Stress Increased Enzyme Activity and Muscle Energy Distribution of Yellowfin Tuna. PLoS ONE 2023, 18, e0289606. https://doi.org/10.1371/journal.pone.0289606.
- 22.
Zhang, N.; Yang, R.; Fu, Z.; et al. Mechanisms of Digestive Enzyme Response to Acute Salinity Stress in Juvenile Yellowfin Tuna (Thunnus albacares). Animals 2023, 13, 3454. https://doi.org/10.3390/ani13223454.
- 23.
Zhou, S.; Zhang, N.; Fu, Z.; et al. Impact of Salinity Changes on the Antioxidation of Juvenile Yellowfin Tuna (Thunnus albacares). J. Mar. Sci. Eng. 2023, 11, 132. https://doi.org/10.3390/jmse11010132.
- 24.
Sun, Y.; Fu, Z.; Ma, Z. The Impact of Acute Ammonia Nitrogen Stress on Serum Biochemical Indicators and Spleen Gene Expression in Juvenile Yellowfin Tuna (Thunnus albacares). Animals 2024, 14, 3090. https://doi.org/10.3390/ani14213090.
- 25.
Sun, Y.; Fu, Z.; Ma, Z. The Effects of Acute Ammonia Nitrogen Stress on Antioxidant Ability, Phosphatases, and Related Gene Expression in the Kidney of Juvenile Yellowfin Tuna (Thunnus albacares). J. Mar. Sci. Eng. 2024, 12, 1009. https://doi.org/10.3390/jmse12061009.
- 26.
Sun, Y.; Fu, Z.; Ma, Z. The Effects of Acute Ammonia Stress on Liver Antioxidant, Immune and Metabolic Responses of Juvenile Yellowfin Tuna (Thunnus albacares). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2024, 297, 111707. https://doi.org/10.1016/j.cbpa.2024.111707.
- 27.
Sun, Y.; Fu, Z.; Liu, X.; et al. The Impact of Acute Ammonia Nitrogen Stress on the Gill Tissue Structure and Antioxidant Ability of Gills and Red and White Muscle in Juvenile Yellowfin Tuna (Thunnus albacares). Antioxidants 2024, 13, 1357. https://doi.org/10.3390/antiox13111357.
- 28.
Sun, Y.; Fu, Z.; Ma, Z. Mechanism of Digestion Enzymes and Related Genes in Response to Acute Ammonia-Nitrogen Stress in Juvenile Yellowfin Tuna (Thunnus albacares). Mar. Environ. Res. 2025, 209, 107165. https://doi.org/10.1016/j.marenvres.2025.107165.
- 29.
Wang, X.; Yang, R.; Fu, Z.; et al. Antioxidant and Metabolic Response to Acute Acidification Stress of Juvenile Yellowfin Tuna (Thunnus albacares). J. Mar. Sci. Eng. 2024, 12, 970. https://doi.org/10.3390/jmse12060970.
- 30.
Wang, X.; Zhou, S.; Wang, Y.; et al. Effects of acidification stress on antioxidant and immunity in juvenile yellowfin tuna (Thunnus albacares). Nanfang Shuichan Kexue South China Fish. Sci. 2024, 20, 85–91. https://doi.org/10.12131/20230216.
- 31.
Islam, M.J.; Kunzmann, A.; Slater, M.J. Responses of Aquaculture Fish to Climate Change-Induced Extreme Temperatures: A Review. J. World Aquac. Soc. 2022, 53, 314–366. https://doi.org/10.1111/jwas.12853.
- 32.
Agarwal, D.; Shanmugam, S.A.; Kathirvelpandian, A.; et al. Unraveling the Impact of Climate Change on Fish Physiology: A Focus on Temperature and Salinity Dynamics. J. Appl. Ichthyol. 2024, 2024, 5782274. https://doi.org/10.1155/2024/5782274.
- 33.
Peck, M.A.; Reglero, P.; Takahashi, M.; et al. Life Cycle Ecophysiology of Small Pelagic Fish and Climate-Driven Changes in Populations. Prog. Oceanogr. 2013, 116, 220–245. https://doi.org/10.1016/j.pocean.2013.05.012.
- 34.
Smith, K.E.; Burrows, M.T.; Hobday, A.J.; et al. Socioeconomic Impacts of Marine Heatwaves: Global Issues and Opportunities. Science 2021, 374, eabj3593. https://doi.org/10.1126/science.abj3593.
- 35.
Yadav, N.K.; Patel, A.B.; Singh, S.K.; et al. Climate Change Effects on Aquaculture Production and Its Sustainable Management through Climate-Resilient Adaptation Strategies: A Review. Environ. Sci. Pollut. Res. 2024, 31, 31731–31751. https://doi.org/10.1007/s11356-024-33397-5.
- 36.
Ainsworth, T.D.; Hurd, C.L.; Gates, R.D.; et al. How Do We Overcome Abrupt Degradation of Marine Ecosystems and Meet the Challenge of Heat Waves and Climate Extremes? Glob. Chang. Biol. 2020, 26, 343–354. https://doi.org/10.1111/gcb.14901.
- 37.
Atalah, J.; Ibañez, S.; Aixalà, L.; et al. Marine Heatwaves in the Western Mediterranean: Considerations for Coastal Aquaculture Adaptation. Aquaculture 2024, 588, 740917. https://doi.org/10.1016/j.aquaculture.2024.740917.
- 38.
Logan, C.A.; Buckley, B.A. Transcriptomic Responses to Environmental Temperature in Eurythermal and Stenothermal Fishes. J. Exp. Biol. 2015, 218, 1915–1924. https://doi.org/10.1242/jeb.114397.
- 39.
Roychowdhury, P.; Aftabuddin, M.; Pati, M.K. A Review on The Impact of Thermal Stress on Fish Biochemistry. Aquat. Sci. Eng. 2024, 39, 121–129. https://doi.org/10.26650/ASE20231341460.
- 40.
Alfonso, S.; Gesto, M.; Sadoul, B. Temperature Increase and Its Effects on Fish Stress Physiology in the Context of Global Warming. J. Fish Biol. 2021, 98, 1496–1508. https://doi.org/10.1111/jfb.14599.
- 41.
Dahlke, F.T.; Wohlrab, S.; Butzin, M.; et al. Thermal Bottlenecks in the Life Cycle Define Climate Vulnerability of Fish. Science 2020, 369, 65–70. https://doi.org/10.1126/science.aaz3658.
- 42.
Ma, S.; Lv, Y.; Hou, L.; et al. Effect of Acute Temperature Stress on Energy Metabolism, Immune Performance and Gut Microbiome of Largemouth Bass (Micropterus salmoides). Aquac. Fish. 2025, 10, 260–270. https://doi.org/10.1016/j.aaf.2023.10.001.
- 43.
Fang, M.; Lei, Z.; Ruilin, M.; et al. High Temperature Stress Induced Oxidative Stress, Gut Inflammation and Disordered Metabolome and Microbiome in Tsinling Lenok Trout. Ecotoxicol. Environ. Saf. 2023, 266, 115607. https://doi.org/10.1016/j.ecoenv.2023.115607.
- 44.
Guo, K.; Zhang, R.; Luo, L.; et al. Effects of Thermal Stress on the Antioxidant Capacity, Blood Biochemistry, Intestinal Microbiota and Metabolomic Responses of Luciobarbus Capito. Antioxidants 2023, 12, 198. https://doi.org/10.3390/antiox12010198.
- 45.
Dickson, K.A.; Graham, J.B. Evolution and Consequences of Endothermy in Fishes. Physiol. Biochem. Zool. 2004, 77, 998–1018. https://doi.org/10.1086/423743.
- 46.
Abe, T.K.; Fuke, M.; Fujioka, K.; et al. Juvenile-Specific High Heat Production Contributes to the Initial Step of Endothermic Development in Pacific Bluefin Tuna. Front. Physiol. 2025, 16, 1512043. https://doi.org/10.3389/fphys.2025.1512043.
- 47.
Graham, J.B.; Dickson, K.A. Anatomical and Physiological Specializations for Endothermy. In Fish Physiology; Tuna: Physiology, Ecology, and Evolution; Academic Press: Cambridge, MA, USA, 2001; Volume 19, pp. 121–165. https://doi.org/10.1016/S1546-5098(01)19005-9
- 48.
Stoehr, A.A.; Donley, J.M.; Aalbers, S.A.; et al. Thermal Effects on Red Muscle Contractile Performance in Deep-Diving, Large-Bodied Fishes. Fish Physiol. Biochem. 2020, 46, 1833–1845. https://doi.org/10.1007/s10695-020-00831-7.
- 49.
Bernal, D.; Brill, R.W.; Dickson, K.A.; et al. Sharing the Water Column: Physiological Mechanisms Underlying Species-Specific Habitat Use in Tunas. Rev. Fish Biol. Fish. 2017, 27, 843–880. https://doi.org/10.1007/s11160-017-9497-7.
- 50.
Shadwick, R.E.; Schiller, L.L.; Fudge, D.S. Physiology of Swimming and Migration in Tunas. In Swimming Physiology of Fish: Towards Using Exercise to Farm a Fit Fish in Sustainable Aquaculture; Palstra, A.P., Planas, J.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 45–78. https://doi.org/10.1007/978-3-642-31049-2_3.
- 51.
Banh, S.; Wiens, L.; Sotiri, E.; et al. Mitochondrial Reactive Oxygen Species Production by Fish Muscle Mitochondria: Potential Role in Acute Heat-Induced Oxidative Stress. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2016, 191, 99–107. https://doi.org/10.1016/j.cbpb.2015.10.001.
- 52.
Navarro-Guillén, C.; Yúfera, M.; Perera, E. Biochemical Features and Modulation of Digestive Enzymes by Environmental Temperature in the Greater Amberjack, Seriola Dumerili. Front. Mar. Sci. 2022, 9, 960746. https://doi.org/10.3389/fmars.2022.960746.
- 53.
Dildar, T.; Cui, W.; Ikhwanuddin, M.; et al. Aquatic Organisms in Response to Salinity Stress: Ecological Impacts, Adaptive Mechanisms, and Resilience Strategies. Biology 2025, 14, 667. https://doi.org/10.3390/biology14060667.
- 54.
Röthig, T.; Trevathan-Tackett, S.M.; Voolstra, C.R.; et al. Human-Induced Salinity Changes Impact Marine Organisms and Ecosystems. Glob. Chang. Biol. 2023, 29, 4731–4749. https://doi.org/10.1111/gcb.16859.
- 55.
Kültz, D. Physiological Mechanisms Used by Fish to Cope with Salinity Stress. J. Exp. Biol. 2015, 218, 1907–1914.
- 56.
Sen, H.S. Coastal Ecosystems: Risk Factors for Development and Threats Due to Climate Change. In Soil Salinity Management in Agriculture; Apple Academic Press: Burlington, ON, Canada, 2017.
- 57.
Scourse, J. Oceans and Marine Resources in a Changing Climate. In Oceanography and Marine Biology; CRC Press: Boca Raton, FL, USA, 2013.
- 58.
Dong, S.-L.; Tian, X.-L. Effects of Environmental Factor Fluctuation on Aquatic Organisms. In Aquaculture Ecology; Dong, S.-L., Tian, X.-L., Gao, Q.-F., et al., Eds.; Springer Nature: Singapore, 2023; pp. 219–247. https://doi.org/10.1007/978-981-19-5486-3_6.
- 59.
Rivera-Ingraham, G.A.; Lignot, J.-H. Osmoregulation, Bioenergetics and Oxidative Stress in Coastal Marine Invertebrates: Raising the Questions for Future Research. J. Exp. Biol. 2017, 220, 1749–1760. https://doi.org/10.1242/jeb.135624.
- 60.
Dubey, S.K.; Trivedi, R.K.; Chand, B.K.; et al.. The Effect of Salinity on Survival and Growth of the Freshwater Stenohaline Fish Spotted Snakehead Channa Punctata (Bloch, 1793). Zool. Ecol. 2016, 26, 282–291. https://doi.org/10.1080/21658005.2016.1225867.
- 61.
Djiba, P.K.; Zhang, J.; Xu, Y.; et al.. Correlation between Metabolic Rate and Salinity Tolerance and Metabolic Response to Salinity in Grass Carp (Ctenopharyngodon idella). Animals 2021, 11, 3445. https://doi.org/10.3390/ani11123445.
- 62.
Mkulo, E.M.; Iddrisu, L.; Yohana, M.A.; et al. Exploring Salinity Adaptation in Teleost Fish, Focusing on Omics Perspectives on Osmoregulation and Gut Microbiota. Front. Mar. Sci. 2025, 12, 1559871. https://doi.org/10.3389/fmars.2025.1559871.
- 63.
Evans, D.H.; Claiborne, J.B. Osmotic and Ionic Regulation in Fishes. In Osmotic and Ionic Regulation; CRC Press: Boca Raton, FL, USA, 2008.
- 64.
Pimentel, M.S.; Faleiro, F.; Diniz, M.; et al. Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean. PLoS ONE 2015, 10, e0134082. https://doi.org/10.1371/journal.pone.0134082.
- 65.
Carneiro, M.D.D.; de Medeiros, R.S.; Monserrat, J.M.; et al. Growth and Oxidative Stress of Clownfish Amphiprion Ocellaris Reared at Different Salinities. Fishes 2024, 9, 30. https://doi.org/10.3390/fishes9010030.
- 66.
Chang, C.-H.; Mayer, M.; Rivera-Ingraham, G.; et al. Effects of Temperature and Salinity on Antioxidant Responses in Livers of Temperate (Dicentrarchus labrax) and Tropical (Chanos chanos) Marine Euryhaline Fish. J. Therm. Biol. 2021, 99, 103016. https://doi.org/10.1016/j.jtherbio.2021.103016.
- 67.
Pujante, I.M.; Moyano, F.J.; Martos-Sitcha, J.A.; et al. Effect of Different Salinities on Gene Expression and Activity of Digestive Enzymes in the Thick-Lipped Grey Mullet (Chelon labrosus). Fish Physiol. Biochem. 2018, 44, 349–373. https://doi.org/10.1007/s10695-017-0440-6.
- 68.
Han, J.; Lee, K.-W. Influence of Salinity on Population Growth, Oxidative Stress and Antioxidant Defense System in the Marine Monogonont Rotifer Brachionus plicatilis. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2020, 250, 110487. https://doi.org/10.1016/j.cbpb.2020.110487.
- 69.
Morales-Rivera, M.F.; Valenzuela-Miranda, D.; Nuñez-Acuña, G.; et al. Atlantic Salmon (Salmo salar) Transfer to Seawater by Gradual Salinity Changes Exhibited an Increase in The Intestinal Microbial Abundance and Richness. Microorganisms 2022, 11, 76. https://doi.org/10.3390/microorganisms11010076.
- 70.
Sun, Y.; Wu, J.; Li, H.; et al. Gut Microbiota Dysbiosis Triggered by Salinity Stress Enhances Systemic Inflammation in Spotted Scat (Scatophagus argus). Fish Shellfish. Immunol. 2025, 162, 110353. https://doi.org/10.1016/j.fsi.2025.110353.
- 71.
Ern, R.; Andreassen, A.H.; Jutfelt, F. Physiological Mechanisms of Acute Upper Thermal Tolerance in Fish. Physiology 2023, 38, 141–158. https://doi.org/10.1152/physiol.00027.2022.
- 72.
Ip, Y.K.; Chew, S.F. Ammonia Production, Excretion, Toxicity, and Defense in Fish: A Review. Front. Physiol. 2010, 1, 134. https://doi.org/10.3389/fphys.2010.00134.
- 73.
Jin, J.-H.; Wang, H.-J.; Amenyogbe, E.; et al. Effects of Ammonia Nitrogen Stress on Liver Tissue Structure and Physiological Indicators, and Metabolomic Analysis of Juvenile Four-Finger Threadfin (Eleutheronema tetradactylum). Front. Mar. Sci. 2025, 12, 1549668. https://doi.org/10.3389/fmars.2025.1549668.
- 74.
Xu, Z.; Cao, J.; Qin, X.; et al. Toxic Effects on Bioaccumulation, Hematological Parameters, Oxidative Stress, Immune Responses and Tissue Structure in Fish Exposed to Ammonia Nitrogen: A Review. Animals 2021, 11, 3304. https://doi.org/10.3390/ani11113304.
- 75.
Parvathy, A.J.; Das, B.C.; Jifiriya, M.J.; et al. Ammonia Induced Toxico-Physiological Responses in Fish and Management Interventions. Rev. Aquac. 2023, 15, 452–479. https://doi.org/10.1111/raq.12730.
- 76.
Edwards, T.M.; Puglis, H.J.; Kent, D.B.; et al. Ammonia and Aquatic Ecosystems—A Review of Global Sources, Biogeochemical Cycling, and Effects on Fish. Sci. Total Environ. 2024, 907, 167911. https://doi.org/10.1016/j.scitotenv.2023.167911.
- 77.
Foyle, K.L.; Hess, S.; Powell, M.D.; et al. What Is Gill Health and What Is Its Role in Marine Finfish Aquaculture in the Face of a Changing Climate? Front. Mar. Sci. 2020, 7, 400. https://doi.org/10.3389/fmars.2020.00400.
- 78.
Vera, L.; Aguilar Galarza, B.; Reinoso, S.; et al. Determination of Acute Toxicity of Unionized Ammonia in Juvenile Longfin Yellowtail (Seriola rivoliana). J. World Aquac. Soc. 2023, 54, 1110–1120. https://doi.org/10.1111/jwas.12971.
- 79.
Caipang, C.M.A.; Brinchmann, M.F.; Berg, I.; et al. Changes in Selected Stress and Immune-Related Genes in Atlantic Cod, Gadus Morhua, Following Overcrowding. Aquac. Res. 2008, 39, 1533–1540. https://doi.org/10.1111/j.1365-2109.2008.02026.x.
- 80.
Guo, M.; Xu, Z.; Zhang, H.; et al. The Effects of Acute Exposure to Ammonia on Oxidative Stress, Hematological Parameters, Flesh Quality, and Gill Morphological Changes of the Large Yellow Croaker (Larimichthys crocea). Animals 2023, 13, 2534. https://doi.org/10.3390/ani13152534.
- 81.
Heuer, R.M.; Grosell, M. Physiological Impacts of Elevated Carbon Dioxide and Ocean Acidification on Fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R1061–R1084. https://doi.org/10.1152/ajpregu.00064.2014.
- 82.
Noor, N.M.D.; Das, S.K. Effects of Elevated Carbon Dioxide on Marine Ecosystem and Associated Fishes. Thalassas 2019, 35, 421–429. https://doi.org/10.1007/s41208-019-00161-3.
- 83.
Nagelkerken, I.; Allan, B.J.M.; Booth, D.J.; et al. The Effects of Climate Change on the Ecology of Fishes. PLoS Clim. 2023, 2, e0000258. https://doi.org/10.1371/journal.pclm.0000258.
- 84.
Esbaugh, A.J. Physiological Implications of Ocean Acidification for Marine Fish: Emerging Patterns and New Insights. J. Comp. Physiol. B 2018, 188, 1–13. https://doi.org/10.1007/s00360-017-1105-6.
- 85.
Clements, J.C.; Sundin, J.; Clark, T.D.; et al. Meta-Analysis Reveals an Extreme “Decline Effect” in the Impacts of Ocean Acidification on Fish Behavior. PLoS Biol. 2022, 20, e3001511. https://doi.org/10.1371/journal.pbio.3001511.
- 86.
Carvalho Alves, A. Ocean Acidification: Physiological Response from Fish to Cell. Ph.D. Thesis, Universidad de Cádiz, Cádiz, Spain, 2022.