2509001271
  • Open Access
  • Article

Digestive and Metabolic Functional Responses of Juvenile Yellowfin Tuna (Thunnus albacares) to Acute Acidification Stress

  • Xiaoyan Wang 1, 2, 3, 4, 5, †,   
  • Xuancheng Liu 6, †,   
  • Zhengyi Fu 1, 2, 3, 4, 5, 6, 7,   
  • Jing Bai 8,   
  • Zhenhua Ma 1, 2, 3, 4, 5, 7, *

Received: 21 Aug 2025 | Revised: 04 Sep 2025 | Accepted: 08 Sep 2025 | Published: 11 Sep 2025

Abstract

This study investigated the tolerance of juvenile yellowfin tuna (Thunnus albacares) to acute acidification by determining the activities of trypsin, pepsin, α-amylase (AMS), lipase (LPS), lactate dehydrogenase (LDH), pyruvate kinase (PK), and Na+K+-ATPase (NKA) under varying pH conditions, combined with histological section preparation to examine morphological changes. The research aims to provide fundamental reference data for the cage aquaculture of this species. The main findings were as follows: Protease activity increased at pH 7.6; α-amylase activity elevated in the pyloric caeca and liver at pH 7.1, while both α-amylase and lipase activities increased in the stomach at pH 6.6. Foregut enzyme activities decreased with increasing acidity. Hepatic alanine aminotransferase and aspartate aminotransferase were significantly elevated at pH 7.6, whereas gill metabolic enzymes peaked at pH 6.6. Histological analyses showed shortened bends in the midgut villi visible to the naked eye and gill lamellae hyperplasia under low pH conditions. These results indicate moderate adaptability at pH 7.6 but marked physiological stress at pH 6.6.

References 

  • 1.
    Qin, J.; Ma, Z.; Li, Y. Review and Outlook for Research and Development in Aquatic Life and Ecosystems. Aquat. Life Ecosyst. 2015, 1, 2.
  • 2.
    Orr, J.C.; Fabry, V.J.; Aumont, O.; et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 2005, 437, 681–686. https://doi.org/10.1038/nature04095.
  • 3.
    Tang, Q.; Chen, C.T.; Yu, K.F.; et al. The effects of ocean acidification on marine organisms and ecosystem. Chin. Sci. Bull. 2013, 58, 1307–1314. https://doi.org/10.1360/972012-1596.
  • 4.
    Mingle, J. Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC: Geneva, Switzerland, 2020; Volume 67, pp. 49–51.
  • 5.
    Glaspie, C.N.; Longmire, K.; Seitz, R.D. Acidification alters predator-prey interactions of blue crab Callinectes sapidus and soft-shell clam Mya arenaria. J. Exp. Mar. Biol. Ecol. 2017, 489, 58–65. https://doi.org/10.1016/j.jembe.2016.11.010.
  • 6.
    Miller, S.H.; Breitburg, D.L.; Burrell, R.B.; et al. Acidification increases sensitivity to hypoxia in important forage fishes. Mar. Ecol. Prog. Ser. 2016, 549, 1–8. https://doi.org/10.3354/meps11695.
  • 7.
    Robbins, L.L.; Lisle, J. Regional Acidification Trends in Florida Shellfish Estuaries: A 20+ Year Look at pH, Oxygen, Temperature, and Salinity. Estuaries Coasts 2018, 41, 1268–1281. https://doi.org/10.1007/s12237-017-0353-8.
  • 8.
    Pörtner, H. Ecosystem effects of ocean acidification in times of ocean warming: A physiologist’s view. Mar. Ecol. Prog. Ser. 2008, 373, 203–218. https://doi.org/10.3354/meps07768.
  • 9.
    Enzor, L.A.; Hunter, E.M.; Place, S.P. The effects of elevated temperature and ocean acidification on the metabolic pathways of notothenioid fish. Conserv. Physiol. 2017, 5, cox019. https://doi.org/10.1093/conphys/cox019.
  • 10.
    Melzner, F.; Göbel, S.; Langenbuch, M.; et al. Swimming performance in Atlantic Cod (Gadus morhua) following long-term (4–12 months) acclimation to elevated seawater PCO2. Aquat. Toxicol. 2008, 92, 30–37. https://doi.org/10.1016/j.aquatox.2008.12.011.
  • 11.
    Strobel, A.; Graeve, M.; Poertner, H.O.; et al. Mitochondrial acclimation capacities to ocean warming and acidification are limited in the antarctic Nototheniid Fish, Notothenia rossii and Lepidonotothen squamifrons. PLoS ONE 2013, 8, e68865. https://doi.org/10.1371/journal.pone.0068865.
  • 12.
    Sokolova, M.I.; Frederich, M.; Bagwe, R.; et al. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 2012, 79, 1–15. https://doi.org/10.1016/j.|marenvres.2012.04.003.
  • 13.
    Louise, C.; Marta, M.; Guy, C.; et al. Food availability modulates the combined effects of ocean acidification and warming on fish growth. Sci. Rep. 2020, 10, 2338. https://doi.org/10.1038/s41598-020-58846-2.
  • 14.
    Freitas, R.; Marchi, D.L.; Bastos, M.; et al. Effects of seawater acidification and salinity alterations on metabolic, osmoregulation and oxidative stress markers in Mytilus galloprovincialis. Ecol. Indic. 2017, 79, 54–62. https://doi.org/10.1016/j.ecolind.2017.04.003.
  • 15.
    Khan, F.U.; Hu, M.; Kong, H.; et al. Ocean acidification, hypoxia and warming impair digestive parameters of marine mussels. Chemosphere 2020, 256, 127096. https://doi.org/10.1016/j.chemosphere.2020.127096.
  • 16.
    Xu, M.; Sun, T.; Tang, X.; et al. Title: CO2 and HCl-induced seawater acidification impair the ingestion and digestion of blue mussel Mytilus edulis. Chemosphere 2020, 240, 124821. https://doi.org/10.1016/j.chemosphere.2019.124821.
  • 17.
    Hancock, J.R.; Place, S.P. Impact of ocean acidification on the hypoxia tolerance of the woolly sculpin, Clinocottus analis. Conserv. Physiol. 2016, 4, w40. https://doi.org/10.1093/conphys/cow040.
  • 18.
    Xu, Z.; Zhang, H.; Guo, M.; et al. Analysis of Acute Nitrite Exposure on Physiological Stress Response, Oxidative Stress, Gill Tissue Morphology and Immune Response of Large Yellow Croaker (Larimichthys crocea). Animals 2022, 12, 1791. https://doi.org/10.3390/ANI12141791.
  • 19.
    Fivelstad, S.; Waagbø, R.; Zeitz, S.F.; et al. A major water quality problem in smolt farms: Combined effects of carbon dioxide, reduced pH and aluminium on Atlantic salmon (Salmo salar L.) smolts: Physiology and growth. Aquaculture 2003, 215, 339–357. https://doi.org/10.1016/S0044-8486(02)00197-7.
  • 20.
    Schmidt, M.; Gerber, R.; Fielder, D.S. Effects of ocean acidification on digestive enzymes and intestinal morphology in a marine fish. Mar. Biol. 2019, 166, 151.
  • 21.
    Frommel, Y.A.; Maneja, R.; Lowe, D.; et al. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nat. Clim. Chang. 2012, 2, 42–46.
  • 22.
    Frommel, A.Y.; Maneja, R.; Lowe, D.; et al. Organ damage in Atlantic herring larvae as a result of ocean acidification. Ecol. Appl. 2014, 24, 1131–1143.
  • 23.
    Ilyina, T.; Six, K.D.; Segschneider, J.; et al. Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. J. Adv. Model. EarthSyst. 2013, 5, 287–315. https://doi.org/10.1029/2012MS000178.
  • 24.
    Feely, R.A.; Sabine, C.L.; Hernandez-Ayon, J.M.; et al. Evidence for Upwelling of Corrosive “Acidified” Water onto the Continental Shelf. Science 2008, 320, 1490–1492. https://doi.org/10.1126/science.1155676.
  • 25.
    Manzello, D.P. Ocean acidification hotspots: Spatiotemporal dynamics of the seawater CO2 system of eastern Pacific coral reefs. Limnol. Oceanogr. 2010, 55, 239–248. https://doi.org/10.4319/lo.2010.55.1.0239.
  • 26.
    Frommel, Y.A.; Margulies, D.; Wexler, B.J.; et al. Ocean acidification has lethal and sub-lethal effects on larval development of yellowfin tuna, Thunnus albacares. J. Exp. Mar. Biol.Ecol. 2016, 482, 18–24.
  • 27.
    Bromhead, D.; Scholey, V.; Nicol, S.; et al. The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares). Deep. Sea Res. Part II Top. Stud. Oceanogr. 2015, 113, 268–279.
  • 28.
    Shengjie, Z.; Ninglu, Z.; Zhengyi, F.; et al. Impact of Salinity Changes on the Antioxidation of Juvenile Yellowfin Tuna (Thunnus albacares). J. Mar. Sci. Eng. 2023, 11, 132. https://doi.org/10.3390/jmse11010132.
  • 29.
    Havice, E. The structure of tuna access agreements in the Western and Central Pacific Ocean: Lessons for Vessel Day Scheme planning. Mar. Policy 2010, 34, 979–987. https://doi.org/10.1016/j.marpol.2010.02.004.
  • 30.
    Bell, D.J.; Ganachaud, A.; Gehrke, C.P.; et al. Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat. Clim. Chang. 2013, 3, 591–599. https://doi.org/10.1038/nclimate1838.
  • 31.
    Juan-Jordá, M.J.; Mosqueira, I.; Cooper, A.B.; et al. Global population trajectories of tunas and their relatives. Proc. Natl. Acad. Sci. USA 2011, 108, 20650–20655. https://doi.org/10.1073/pnas.1107743108.
  • 32.
    Inter-American Tropical Tuna Commission. Tunas and Billfishes in the Eastern Pacific Ocean in 2006; Inter-American Tropical Tuna Commission (IATTC): La Jolla, CA, USA, 2008; pp. 10–100.
  • 33.
    Fu, Z.; Bai, J.; Ma, Z. Physiological Adaptations and Stress Responses of Juvenile Yellowfin Tuna (Thunnus albacares) in Aquaculture: An Integrative Review. Aquat. Life Ecosyst. 2025, 1, 3.
  • 34.
    Wexler, B.J.; Scholey, P.V.; Olson, J.R.; et al. Tank culture of yellowfin tuna, Thunnus albacares: Developing a spawning population for research purposes. Aquaculture 2003, 220, 327–353.
  • 35.
    Fu, Z.; Qin, J.G.; Ma, Z.; et al. Acute acidification stress weakens the head kidney immune function of juvenile Lates calcarifer. Ecotoxicol. Environ. Saf. 2021, 225, 112712. https://doi.org/10.1016/J.ECOENV.2021.112712.
  • 36.
    Caldeira, K.; Wickett, M.E. Anthropogenic carbon and ocean pH. Nature 2003, 425, 365. https://doi.org/10.1038/425365a.
  • 37.
    Ilyina, T.; Zeebe, R.E.; Reimer, E.M.; et al. Early detection of ocean acidification effects on marine calcification. Glob. Biogeochem. Cycles 2009, 23, B1008–B1011. https://doi.org/10.1029/2008GB003278.
  • 38.
    Shi, W.; Zhao, X.; Han, Y.; et al. Effects of reduced pH and elevated pCO2 on sperm motility and fertilisation success in blood clam, Tegillarca granosa. N. Z. J. Mar. Freshwater Res. 2017, 51, 543–554. https://doi.org/10.1080/00288330.2017.1296006.
  • 39.
    Ohno, Y.; Iguchi, A.; Shinzato, C.; et al. An aposymbiotic primary coral polyp counteracts acidification by active pH regulation. Sci. Rep. 2017, 7, 40324. https://doi.org/10.1038/SREP40324.
  • 40.
    Sun, T.; Tang, X.; Zhou, B.; et al. Comparative studies on the effects of seawater acidification caused by CO2 and HCl enrichment on physiological changes in Mytilus edulis. Chemosphere 2016, 144, 2368–2376. https://doi.org/10.1016/j.chemosphere.2015.10.117.
  • 41.
    Rosseland, B.O.; Massabuau, J.C.; Grimalt, J.; et al. Fish ecotoxicology: European mountain lake ecosystems regionalisation, diagnostic and socio-economic evaluation (EMERGE). In Fish Sampling Manual for Live Fish; Norwegian Institute for Water Research (NIVA): Oslo, Norway, 2003; p. 23.
  • 42.
    Gonçalves, M.; Lopes, C.; Silva, P. Comparative histological description of the intestine in platyfish (Xiphophorus maculatus) and swordtail fish (Xiphophorus helleri). Tissue Cell 2024, 87, 102306. https://doi.org/10.1016/J.TICE.2024.102306.
  • 43.
    Cui, Y.; Lin, X.D.; Kang, M.L.; et al. Low temperature combined with high-humidity thawing reduced the physicochemical quality deterioration of Pampus argenteus. Mod. Food Sci. Technol. 2018, 34, 81–89. https://doi.org/10.13982/j.mfst.1673-9078.2018.8.013.
  • 44.
    Huang, J.; Fu, Z.; Bai, J.; et al. Cold stress disrupts gill homeostasis in juvenile yellowfin tuna (Thunnus albacares) by altering oxidative, metabolic, and immune responses. Mar. Environ. Res. 2025, 210, 107300. https://doi.org/10.1016/J.MARENVRES.2025.107300.
  • 45.
    Li, X.; Wei, P.; Liu, S.; et al. Photoperiods affect growth, food intake and physiological metabolism of juvenile European Sea Bass (Dicentrachus labrax L.). Aquac. Rep. 2021, 20, 100656. https://doi.org/10.1016/J.AQREP.2021.100656.
  • 46.
    Álvarez-González, A.C.; Martínez-Sánchez, L.; Peña-Marín, S.E.; et al. Effects on the Growth and Digestive Enzyme Activity in Nile Tilapia Fry (Oreochromis niloticus) by Lead Exposure. Water Air Soil Pollut. 2020, 231, 197–206. https://doi.org/10.1007/s11270-020-04810-9.
  • 47.
    Yang, M.; Jiang, F.; Shi, Y.; et al. Effect of high temperature stress on activities of digestive enzymes in Alosa sapidissima. J. Northwest A F Univ. 2020, 48, 1–8.
  • 48.
    Shi, Z.H.; Xie, M.M.; Peng, S.M.; et al. Effects of Temperature Stress on Activities of Digestive Enzymes and Serum Biochemical Indices of Pampus argenteus Juveniles. Prog. Fish. Sci. 2016, 37, 30–37.
  • 49.
    Liu, H.Y.; Yang, R.; Fu, Z.Y.; et al. Acute thermal stress increased enzyme activity and muscle energy distribution of yellowfin tuna. PLoS ONE 2023, 18, e0289606.
  • 50.
    Yang, E.J.; Zhang, J.D.; Yang, L.T.; et al. Effects of hypoxia stress on digestive enzyme activities, intestinal structure and the expression of tight junction proteins coding genes in juvenile cobia (Rachycentron canadum). Aquac. Res. 2021, 52, 5630–5641.
  • 51.
    Liu, Y.; Hu, J.; Zhou, S.; et al. Effect of acute ammonia stress on antioxidant enzymes and digestive enzymes in barramundi Lates calcarifer larvae. Isr. J. Aquac. Bamidgeh 2018, 70, 1508.
  • 52.
    Liu, H.; Li, H.; Wei, H.; et al. Effects of low pH on the gene expression and activity of digestive enzymes in the giant freshwater prawn Macrobrachium rosenbergii. Aquac. Res. 2016, 47, 2779–2789.
  • 53.
    Alves, A.; Gregório, F.S.; Ruiz-Jarabo, I.; et al. Intestinal response to ocean acidification in the European sea bass (Dicentrarchus labrax). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2020, 250, 110789. https://doi.org/10.1016/j.cbpa.2020.110789.
  • 54.
    Noda, M.; Murakami, K. Studies on proteinases from the digestive organs of sardine. II. Purification and characterization of two acid proteinases from the stomach. Biochim. Biophys. Acta 1981, 658, 27–34. https://doi.org/10.1016/0005-2744(81)90246-1.
  • 55.
    Kihara, M. Pepsin-like protease activity and the gastric digestion within ex vivo Pacific bluefin tuna Thunnus orientalis stomachs, as a gastric digestion model. Anim. Feed. Sci. Technol. 2015, 206, 87–99. https://doi.org/10.1016/j.anifeedsci.2015.05.009.
  • 56.
    Liu, Z.F.; Gao, X.Q.; Yu, J.X.; et al. Effects of different salinities on growth performance, survival, digestive enzyme activity, immune response, and muscle fatty acid composition in juvenile American shad (Alosa sapidissima). Fish Physiol. Biochem. 2017, 43, 761–773. https://doi.org/10.1007/s10695-016-0330-3.
  • 57.
    Anttila, K.; Lewis, M.; Prokkola, J.M.; et al. Warm acclimation and oxygen depletion induce species-specific responses in salmonids. J. Exp. Biol. 2015, 218, 1471–1477.
  • 58.
    Pimentel, M.S.; Filipa, F.; Mário, D.; et al. Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean. PLoS ONE 2015, 10, e134082. https://doi.org/10.1371/journal.pone.0134082.
  • 59.
    Liu, G.; Ye, Z.; Liu, D.; et al. Influence of Stocking Density on Growth, Digestive Enzyme Activity, Immunity, and Cortisol Levels of Subadult Half-smooth Tongue Sole Cynoglossus semilaevis in a Recirculating Aquaculture System. North Am. J. Aquac. 2018, 80, 286–293.
  • 60.
    Fazio, F.; Marafioti, S.; Arfuso, F.; et al. Influence of different salinity on haematological and biochemical parameters of the widely cultured mullet, Mugil cephalus. Mar. Freshw. Behav. Physiol. 2013, 46, 211–218. https://doi.org/10.1080/10236244.2013.817728.
  • 61.
    Vargas-Chacoff, L.; Arjona, J.F.; Polakof, S.; et al. Interactive effects of environmental salinity and temperature on metabolic responses of gilthead sea bream Sparus aurata. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 154, 417–424. https://doi.org/10.1016/j.cbpa.2009.07.015.
  • 62.
    Guo, M.; Xu, Z.; Zhang, H.; et al. The Effects of Acute Exposure to Ammonia on Oxidative Stress, Hematological Parameters, Flesh Quality, and Gill Morphological Changes of the Large Yellow Croaker (Larimichthys crocea). Animals 2023, 13, 2534. https://doi.org/10.3390/ANI13152534.
  • 63.
    Shi, Z.H.; Liao, L.Y.; Wang, X.S.; et al. Impact of abrupt salinity decrease on metabolic enzymes in the liver of Epinehelus moara. Mar. Fish. 2016, 38, 64–71.
  • 64.
    Yanpeng, Z.; Fang, X.L.; Shan, H.; et al. Effects of long-term low-concentration nitrite exposure and detoxification on growth performance, antioxidant capacities, and immune responses in Chinese perch (Siniperca chuatsi). Aquaculture 2021, 533, 637123. https://doi.org/10.1016/j.aquaculture.2020.736123.
  • 65.
    Younis, E.M. Variation in metabolic enzymatic activity in white muscle and liverof blue tilapia, Oreochromis aureus, in response to long-term thermalacc limatization. Chin. J. Oceanol. Limnol. 2015, 33, 696–704.
  • 66.
    Torfi, M.M.; Omid, S.; Rahim, O.; et al. The effect of salinity on growth performance, digestive and antioxidant enzymes, humoral immunity and stress indices in two euryhaline fish species: Yellowfin seabream (Acanthopagrus latus) and Asian seabass (Lates calcarifer). Aquaculture 2021, 534, 736329. https://doi.org/10.1016/J.AQUACULTURE.2020.736329.
  • 67.
    Heuer, R.M.; Grosell, M. Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am. J. Physiol. Regul. Integr. Comp.Physiol. 2014, 307, 1061–1084.
  • 68.
    Zhang, J.; Li, X.; Zhao, C.; et al. The role of oxidative stress in liver injury and the protective effects of antioxidant agents in aquatic animals. Aquat. Toxicol. 2023, 264, 106730. https://doi.org/10.1016/j.aquatox.2023.106730.
  • 69.
    Eggestøl, H.Ø.; Lunde, H.S.; Haugland, G.T. The proinflammatory cytokines TNF-α and IL-6 in lumpfish (Cyclopterus lumpus L.)-identification, molecular characterization, phylogeny and gene expression analyses. Dev. Comp. Immunol. 2020, 105, 103608.
  • 70.
    Powers, D.A.; Lauerman, T.; Crawford, D.; et al. Genetic mechanisms for adapting to a changing environment. Annu. Rev. Genet. 1991, 25, 629–660. https://doi.org/10.1146/annurev.ge.25.120191.003213.
  • 71.
    Jia, Y.; Jing, Q.; Xing, Z.; et al. Effects of two different culture systems on the growth performance and physiological metabolism of tiger pufferfish (Takifugu rubripes). Aquaculture 2018, 495, 267–272. https://doi.org/10.1016/j.aquaculture.2018.05.049.
  • 72.
    Michaelidis, B.; Spring, A.; Pörtner, O.H. Effects of long-term acclimation to environmental hypercapnia on extracellular acid–base status and metabolic capacity in Mediterranean fish Sparus aurata. Mar. Biol. 2007, 150, 1417–1429. https://doi.org/10.1007/s00227-006-0436-8.
  • 73.
    Ming-Jian, L.; Hua-Yang, G.; Bo, L.; et al. Gill oxidative damage caused by acute ammonia stress was reduced through the HIF-1α/NF-κb signaling pathway in golden pompano (Trachinotus ovatus). Ecotoxicol. Environ. Saf. 2021, 222, 112504. https://doi.org/10.1016/J.ECOENV.2021.112504.
  • 74.
    Noor, N.M.; De, M.; Cob, Z.C.; et al. Welfare of scaleless fish, Sagor catfish (Hexanematichthys sagor) juveniles under different carbon dioxide concentrations. Aquac. Res. 2021, 52, 2980–2987.
  • 75.
    Qiang, J.; Wang, H.; Li, R.W.; et al. Effects of acid and alkaline stress on energy metabolism of Oreochromis niloticus juveniles with different body mass. Chin. J. Appl. Ecol. 2011, 22, 2438–2446.
  • 76.
    Epelboin, Y.; Quere, C.; Pernet, F.; et al. Energy and antioxidant responses of pacific oyster exposed to trace levels of pesticides. Chem. Res. Toxicol. 2015, 28, 1831–1841. https://doi.org/10.1021/acs.chemrestox.5b00269
  • 77.
    Hirose, S.; Kaneko, T.; Naito, N.; et al. Molecular biology of major components of chloride cells. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2003, 136, 593–620. https://doi.org/10.1016/S1096-4959(03)00287-2.
  • 78.
    De Weer, P.; Gadsby, D.C.; Rakowski, R.F. Voltage dependence of the apparent affinity for external Na(+) of the backward-running sodium pump. J. Gen. Physiol. 2001, 117, 315–328. https://doi.org/10.1085/jgp.117.4.315.
  • 79.
    Fivelstad, S.; Waagbø, R.; Stefansson, S.; et al. Impacts of elevated water carbon dioxide partial pressure at two temperatures on Atlantic salmon (Salmo salar L.) parr growth and haematology. Aquaculture 2007, 269, 241–249. https://doi.org/10.1016/j.aquaculture.2007.05.039.
  • 80.
    Filippov, A.A.; Golovanova, L.I.; Aminov, I.A. Effects of organic pollutants on fish digestive enzymes: A review. Inland Water Biol. 2013, 6, 155–160. https://doi.org/10.1134/S199508291302003X.
  • 81.
    Yang, J.; Zhou, S.; Fu, Z.; et al. Fermented Astragalus membranaceus could promote the liver and intestinal health of juvenile tiger grouper (Epinephelus fuscoguttatus). Front. Physiol. 2023, 14, 1264208. https://doi.org/10.3389/FPHYS.2023.1264208.
  • 82.
    Zhang, N.; Yang, R.; Fu, Z.; et al. Mechanisms of Digestive Enzyme Response to Acute Salinity Stress in Juvenile Yellowfin Tuna (Thunnus albacares). Animals 2023. 13, 3534. https://doi.org/10.3390/ANI13223454.
  • 83.
    Frommel, A.Y.; Brauner, C.J.; Allan BJ, M.; et al. Organ health and development in larval kingfish are unaffected by ocean acidification and warming. PeerJ 2019, 7, e8266.
  • 84.
    Fanta, E.; Rios, S.F.; Romão, S.; et al. Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Ecotoxicol. Environ. Saf. 2003, 54, 119–130. https://doi.org/10.1016/S0147-6513(02)00044-1.
  • 85.
    Zhang, W.; Sun, S.; Ge, X.; et al. Acute effects of ammonia exposure on the plasma and haematological parameters and histological structure of the juvenile blunt snout bream, Megalobrama amblycephala, and post-exposure recovery. Aquac.Res. 2018, 2, 1008–1019. https://doi.org/10.1111/are.13548.
  • 86.
    Huang, C.; Feng, L.; Liu, X.; et al. The toxic effects and potential mechanisms of deoxynivalenol on the structural integrity of fish gill: Oxidative damage, apoptosis and tight junctions disruption. Toxicon 2019, 174, 32–42. https://doi.org/10.1016/j.toxicon.2019.12.151.
Share this article:
How to Cite
Wang, X.; Liu, X.; Fu, Z.; Bai, J.; Ma, Z. Digestive and Metabolic Functional Responses of Juvenile Yellowfin Tuna (Thunnus albacares) to Acute Acidification Stress. Aquatic Life and Ecosystems 2025. https://doi.org/10.53941/ale.2025.100004.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.