- 1.
Lokmer, A.; Kuenzel, S.; Baines, J.F.; et al. The role of tissue-specific microbiota in initial establishment success of Pacific oysters. Environ. Microbiol. 2016, 18, 970–987.
- 2.
Ghosh, A.; Rathore, A.; Gaba, S.; et al. The Chinese mitten crab (Eriocheir sinensis) and its microbiome: A review. Aquaculture 2025, 595, 741518.
- 3.
Guryanova, S.V.; Ovchinnikova, T.V. Innate immunity mechanisms in marine multicellular organisms. Mar. Drugs 2022, 20, 549.
- 4.
O’Brien, P.A.; Webster, N.S.; Miller, D.J.; et al. Host-microbe coevolution: Applying evidence from model systems to complex marine invertebrate holobionts. mBio 2019, 10. https://doi.org/10.1128/mbio.02241-18.
- 5.
Yu, J.; Kang, M.; Park, M.; et al. Microbial community structure and functional characteristics across the mucosal surfaces of olive flounder (Paralichthys olivaceus). Front. Microbiol. 2025, 16, 1587288.
- 6.
Deka, D.; Sonowal, S.; Chikkaputtaiah, C.; et al. Symbiotic associations: Key factors that determine physiology and lipid accumulation in oleaginous microorganisms. Front. Microbiol. 2020, 11, 555312.
- 7.
Men, Y.; Yang, Z.; Luo, J.; et al. Symbiotic microorganisms and their different association types in aquatic and semiaquatic bugs. Microbiol. Spectr. 2022, 10, e02794-22.
- 8.
Sharma, S.; Chaubey, K.K.; Singh, S.V.; et al. Symbiotic microbiota: A class of potent immunomodulators. Scienceasia 2022, 48, 855–865.
- 9.
Shulga, N.; Abramov, S.; Klyukina, A.; et al. Fast-growing Arctic Fe-Mn deposits from the Kara Sea as the refuges for cosmopolitan marine microorganisms. Sci. Rep. 2022, 12, 21967.
- 10.
Langdon, C.J.; Newell, R.I.E. Utilization of detritus and bacteria as food sources by two bivalve suspension-feeders, the oyster Crassostrea virginica and the mussel Geukensia demissa. Mar. Ecol. Prog. Ser. 1990, 58, 299–310.
- 11.
Bal, A.; Panda, F.; Pati, S.G.; et al. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp. Biochem. Phys. C 2021, 241, 108971.
- 12.
Wall, C.B.; Perreault, M.G.; Demmel, M.Y.; et al. Geography and host identity shape intraseasonal variation of free-living and zooplankton associated microbial communities in alpine lakes. Mol. Ecol. 2025, e70069. https://doi.org/10.1111/mec.70069.
- 13.
Adair, K.L.; Douglas, A.E. Making a microbiome: The many determinants of host-associated microbial community composition. Curr. Opin. Microbiol. 2017, 35, 23–29.
- 14.
Slinger, J.; Adams, M.B.; Wynne, J.W. Comparison of bacterial diversity and distribution on the gills of Atlantic salmon (Salmo salar L.): An evaluation of sampling techniques. J. Appl. Microbiol. 2021, 131, 80–92.
- 15.
Amill, F.; Gauthier, J.; Rautio, M.; et al. Characterization of gill bacterial microbiota in wild Arctic char (Salvelinus alpinus) across lakes, rivers, and bays in the Canadian Arctic ecosystems. Microbiol. Spectr. 2024, 12, e02943-23.
- 16.
Li, J.; Wang, J.; Wei, H. Strengthening the functional research on the interaction between host genes and microbiota. Sci. China Life Sci. 2020, 63, 929–932.
- 17.
Zeglin, L.H. Stream microbial diversity in response to environmental changes: Review and synthesis of existing research. Front. Microbiol. 2015, 6, 454.
- 18.
Qin, Y.; Noor, Z.; Li, X.; et al. Tetraploid induction of Crassostrea hongkongensis and C. sikamea by inhibiting the polar body 1 release in diploid fertilized eggs. Mar. Life Sci. Tech. 2021, 3, 463–473.
- 19.
Wang, C.; Li, Q.; Kong, L.; et al. Establishment of single oyster (Crassostrea sikamea) seeds. J. Ocean U. China 2016, 46, 136–142+186.
- 20.
Wang, T.; Li, Q. Effects of salinity and temperature on growth and survival of juvenile of Kumamoto oyster (Crassostrea sikamea). Oceanol. Limnol. Sin. 2017, 48, 297–302.
- 21.
Sekino, M.; Sato, S.; Hong, J.-S.; et al. Contrasting pattern of mitochondrial population diversity between an estuarine bivalve, the Kumamoto oyster Crassostrea sikamea, and the closely related Pacific oyster C. gigas. Mar. Biol. 2012, 159, 2757–2776.
- 22.
Tsuyuki, A.; Umino, T. Spatial movement of black sea bream Acanthopagrus schlegelii around the oyster farming area in Hiroshima Bay, Japan. Fish. Sci. 2017, 83, 235–244.
- 23.
Kawai, K.; Fujita, H.; Sanchez, G.; et al. Oyster farms are the main spawning grounds of the black sea bream Acanthopagrus schlegelii in Hiroshima Bay, Japan. PeerJ 2021, 9, e11475.
- 24.
Laroche, R.A.S.; Doan, T.M.; Hanke, M.H. Habitat characteristics of artificial oyster reefs influence female oystershell mud crab Panopeus simpsoni Rathbun, 1930 (Decapoda: Brachyura: Panopeidae). J. Crustac. Biol. 2022, 42, ruac033.
- 25.
Quan, W.; Feng, M.; Zhou, Z.; et al. Ecological assessment of the oyster Crassostrea sikamea population and associated benthic communities on restored oyster reefs along Jiangsu Province coast, China. Acta Ecol. Sin. 2017, 37, 1709–1718.
- 26.
Cressman, K.A.; Posey, M.H.; Mallin, M.A.; et al. Effects of oyster reefs on water quality in a tidal creek estuary. J. Shellfish Res. 2003, 22, 753–762.
- 27.
Piazza, B.P.; Banks, P.D.; La Peyre, M.K. The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Louisiana. Restor. Ecol. 2005, 13, 499–506.
- 28.
Kong, W.; Cheng, G.; Cao, J.; et al. Ocular mucosal homeostasis of teleost fish provides insight into the coevolution between microbiome and mucosal immunity. Microbiome 2024, 12, 10.
- 29.
Destoumieux-Garzon, D.; Montagnani, C.; Dantan, L.; et al. Cross-talk and mutual shaping between the immune system and the microbiota during an oyster’s life. Philos. T. R. Soc. B 2024, 379, 20230065.
- 30.
Dai, W.; Ye, J.; Liu, S.; et al. Bacterial community dynamics in kumamoto oyster Crassostrea sikamea hatchery during larval development. Front. Microbiol. 2022, 13, 933941.
- 31.
Dai, W.; Ye, J.; Xue, Q.; et al. Changes in bacterial communities of kumamoto oyster larvae during their early development and following Vibrio infection resulting in a mass mortality event. Mar. Biotechnol. 2023, 25, 30–44.
- 32.
Liu, S.; Xue, Q.; Xu, H.; et al. Identification of main oyster species and comparison of their genetic diversity in Zhejiang coast, south of Yangtze river estuary. Front. Mar. Sci. 2021, 8, 662515.
- 33.
Xuan, Y.; Chang, G.; Liu, S.; et al. A comparison of the mitochondrial DNA-based genetic diversity of Kumamoto oyster populations from China, Japan, and the United States. Mar. Sci. 2024, 48, 24–33.
- 34.
Wu, X.; Zhang, Y.; Xiao, S.; et al. Comparative studies of the growth, survival, and reproduction of diploid and triploid Kumamoto oyster, Crassostrea sikamea. J. World Aquacult. Soc. 2019, 50, 866–877.
- 35.
Ma, H.; Lv, W.; Qin, Y.; et al. Aquaculture potential of two Kumamoto oyster (Crassostrea sikamea) populations and their reciprocal hybrids in southern China. Aquaculture 2022, 546, 737301.
- 36.
Zhang, Y.; Qin, Y.; Ma, L.; et al. Gametogenesis from the early history life stages of the Kumamoto oyster Crassostrea sikamea and their breeding potential evaluation. Front. Physiol. 2019, 10, 524.
- 37.
Luis-Villasenor, I.E.; Zamudio-Armenta, O.O.; Voltolina, D.; et al. Bacterial communities of the oysters Crassostrea corteziensis and C. sikamea of cospita bay, Sinaloa, Mexico. Rev. Int. Contam. Ambie. 2018, 34, 203–213.
- 38.
Zhang, E.; Li, Z.; Dong, L.; et al. Exploration of molecular mechanisms of immunity in the Pacific oyster (Crassostrea gigas) in response to Vibrio alginolyticus invasion. Animals 2024, 14, 1707.
- 39.
Munoz, K.; Flores-Herrera, P.; Goncalves, A.T.; et al. The immune response of the scallop Argopecten purpuratus is associated with changes in the host microbiota structure and diversity. Fish Shellfish Immunol. 2019, 91, 241–250.
- 40.
Zardinoni, G.; Deb, S.; Ravi, S.; et al. Difference in composition and functional analysis of bacterial communities between Mytilus galloprovincialis gills and surrounding water in a brackish inshore bay, analyzed by 16S rDNA multi-amplicon sequencing. Ann. Microbiol. 2024, 74, 3.
- 41.
Varela, J.L.; Nikouli, E.; Medina, A.; et al. The gills and skin microbiota of five pelagic fish species from the Atlantic Ocean. Int. Microbiol. 2025, 28, 95–105.
- 42.
Fang, G.; Yu, H.; Zhang, Y.; et al. Diversities and shifts of microbial communities associated with farmed oysters (Crassostrea gigas) and their surrounding environments in Laoshan Bay marine ranching, China. Microorganisms 2023, 11, 1167.
- 43.
An, L.; Yan, Y.-C.; Tian, H.-L.; et al. Roles of sulfate-reducing bacteria in sustaining the diversity and stability of marine bacterial community. Front. Microbiol. 2023, 14, 1218828.
- 44.
Zhao, Z.; Jiang, J.; Pan, Y.; et al. Temporal dynamics of bacterial communities in the water and sediments of sea cucumber (Apostichopus japonicus) culture ponds. Aquaculture 2020, 528, 735498.
- 45.
Chen, S.; Zhou, Y.; Chen, Y.; et al. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890.
- 46.
Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963.
- 47.
Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996.
- 48.
Wang, Q.; Garrity, G.M.; Tiedje, J.M.; et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 2007, 73, 5261–5267.