2509001351
  • Open Access
  • Article

Diversity and Interactions of Bacterial Communities in the Gills of Kumamoto Oyster (Crassostrea sikamea) and Its Culture Environment

  • Shengli Fu 1, 2,   
  • Tuo Yao 1, 2,   
  • Jie Lu 1, 2,   
  • Jinxia Peng 3,   
  • Lingtong Ye 1, 2, *

Received: 27 Aug 2025 | Revised: 17 Sep 2025 | Accepted: 18 Sep 2025 | Published: 19 Sep 2025

Abstract

The Kumamoto oyster (Crassostrea sikamea), an indigenous species in southern China, is ecologically and aquaculturally significant. To explore the associations between oyster-associated bacteria and their environment, we analyzed bacterial communities in oyster gills, seawater, and sediment from Techeng Island (TCCS, TCW, TCS) and Longtousha (LTSCS, LTSW, LTSS) using Illumina MiSeq sequencing of the 16S rRNA gene V3–V4 region. Alpha diversity showed the highest richness and diversity in sediments (Shannon index: 6.40–6.52), followed by seawater (4.15–4.58) and gills (2.64–2.99). Taxonomic analysis revealed 75 phyla, with Pseudomonadota (23.23–49.32%) dominant across all habitats. Habitat-specific patterns were observed: Spirochaetota was enriched in gills (45.31–46.43%), Bacteroidota in seawater (6.70–14.05%), and Thermodesulfobacteriota in sediments (0.31–0.91%). At the genus level, norank_f_Spirochaetaceae, Marinococcus, and Woeseia showed significant differences among groups (p ≤ 0.001). Venn and PCoA analyses indicated closer similarity between gill and seawater communities than between gill and sediments, likely linked to oyster filter-feeding. This study clarifies the association between oyster gill bacteria and their environment, providing a basis for understanding microbial dynamics in oyster aquaculture.

References 

  • 1.
    Lokmer, A.; Kuenzel, S.; Baines, J.F.; et al. The role of tissue-specific microbiota in initial establishment success of Pacific oysters. Environ. Microbiol. 2016, 18, 970–987.
  • 2.
    Ghosh, A.; Rathore, A.; Gaba, S.; et al. The Chinese mitten crab (Eriocheir sinensis) and its microbiome: A review. Aquaculture 2025, 595, 741518.
  • 3.
    Guryanova, S.V.; Ovchinnikova, T.V. Innate immunity mechanisms in marine multicellular organisms. Mar. Drugs 2022, 20, 549.
  • 4.
    O’Brien, P.A.; Webster, N.S.; Miller, D.J.; et al. Host-microbe coevolution: Applying evidence from model systems to complex marine invertebrate holobionts. mBio 2019, 10. https://doi.org/10.1128/mbio.02241-18.
  • 5.
    Yu, J.; Kang, M.; Park, M.; et al. Microbial community structure and functional characteristics across the mucosal surfaces of olive flounder (Paralichthys olivaceus). Front. Microbiol. 2025, 16, 1587288.
  • 6.
    Deka, D.; Sonowal, S.; Chikkaputtaiah, C.; et al. Symbiotic associations: Key factors that determine physiology and lipid accumulation in oleaginous microorganisms. Front. Microbiol. 2020, 11, 555312.
  • 7.
    Men, Y.; Yang, Z.; Luo, J.; et al. Symbiotic microorganisms and their different association types in aquatic and semiaquatic bugs. Microbiol. Spectr. 2022, 10, e02794-22.
  • 8.
    Sharma, S.; Chaubey, K.K.; Singh, S.V.; et al. Symbiotic microbiota: A class of potent immunomodulators. Scienceasia 2022, 48, 855–865.
  • 9.
    Shulga, N.; Abramov, S.; Klyukina, A.; et al. Fast-growing Arctic Fe-Mn deposits from the Kara Sea as the refuges for cosmopolitan marine microorganisms. Sci. Rep. 2022, 12, 21967.
  • 10.
    Langdon, C.J.; Newell, R.I.E. Utilization of detritus and bacteria as food sources by two bivalve suspension-feeders, the oyster Crassostrea virginica and the mussel Geukensia demissa. Mar. Ecol. Prog. Ser. 1990, 58, 299–310.
  • 11.
    Bal, A.; Panda, F.; Pati, S.G.; et al. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp. Biochem. Phys. C 2021, 241, 108971.
  • 12.
    Wall, C.B.; Perreault, M.G.; Demmel, M.Y.; et al. Geography and host identity shape intraseasonal variation of free-living and zooplankton associated microbial communities in alpine lakes. Mol. Ecol. 2025, e70069. https://doi.org/10.1111/mec.70069.
  • 13.
    Adair, K.L.; Douglas, A.E. Making a microbiome: The many determinants of host-associated microbial community composition. Curr. Opin. Microbiol. 2017, 35, 23–29.
  • 14.
    Slinger, J.; Adams, M.B.; Wynne, J.W. Comparison of bacterial diversity and distribution on the gills of Atlantic salmon (Salmo salar L.): An evaluation of sampling techniques. J. Appl. Microbiol. 2021, 131, 80–92.
  • 15.
    Amill, F.; Gauthier, J.; Rautio, M.; et al. Characterization of gill bacterial microbiota in wild Arctic char (Salvelinus alpinus) across lakes, rivers, and bays in the Canadian Arctic ecosystems. Microbiol. Spectr. 2024, 12, e02943-23.
  • 16.
    Li, J.; Wang, J.; Wei, H. Strengthening the functional research on the interaction between host genes and microbiota. Sci. China Life Sci. 2020, 63, 929–932.
  • 17.
    Zeglin, L.H. Stream microbial diversity in response to environmental changes: Review and synthesis of existing research. Front. Microbiol. 2015, 6, 454.
  • 18.
    Qin, Y.; Noor, Z.; Li, X.; et al. Tetraploid induction of Crassostrea hongkongensis and C. sikamea by inhibiting the polar body 1 release in diploid fertilized eggs. Mar. Life Sci. Tech. 2021, 3, 463–473.
  • 19.
    Wang, C.; Li, Q.; Kong, L.; et al. Establishment of single oyster (Crassostrea sikamea) seeds. J. Ocean U. China 2016, 46, 136–142+186.
  • 20.
    Wang, T.; Li, Q. Effects of salinity and temperature on growth and survival of juvenile of Kumamoto oyster (Crassostrea sikamea). Oceanol. Limnol. Sin. 2017, 48, 297–302.
  • 21.
    Sekino, M.; Sato, S.; Hong, J.-S.; et al. Contrasting pattern of mitochondrial population diversity between an estuarine bivalve, the Kumamoto oyster Crassostrea sikamea, and the closely related Pacific oyster C. gigas. Mar. Biol. 2012, 159, 2757–2776.
  • 22.
    Tsuyuki, A.; Umino, T. Spatial movement of black sea bream Acanthopagrus schlegelii around the oyster farming area in Hiroshima Bay, Japan. Fish. Sci. 2017, 83, 235–244.
  • 23.
    Kawai, K.; Fujita, H.; Sanchez, G.; et al. Oyster farms are the main spawning grounds of the black sea bream Acanthopagrus schlegelii in Hiroshima Bay, Japan. PeerJ 2021, 9, e11475.
  • 24.
    Laroche, R.A.S.; Doan, T.M.; Hanke, M.H. Habitat characteristics of artificial oyster reefs influence female oystershell mud crab Panopeus simpsoni Rathbun, 1930 (Decapoda: Brachyura: Panopeidae). J. Crustac. Biol. 2022, 42, ruac033.
  • 25.
    Quan, W.; Feng, M.; Zhou, Z.; et al. Ecological assessment of the oyster Crassostrea sikamea population and associated benthic communities on restored oyster reefs along Jiangsu Province coast, China. Acta Ecol. Sin. 2017, 37, 1709–1718.
  • 26.
    Cressman, K.A.; Posey, M.H.; Mallin, M.A.; et al. Effects of oyster reefs on water quality in a tidal creek estuary. J. Shellfish Res. 2003, 22, 753–762.
  • 27.
    Piazza, B.P.; Banks, P.D.; La Peyre, M.K. The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Louisiana. Restor. Ecol. 2005, 13, 499–506.
  • 28.
    Kong, W.; Cheng, G.; Cao, J.; et al. Ocular mucosal homeostasis of teleost fish provides insight into the coevolution between microbiome and mucosal immunity. Microbiome 2024, 12, 10.
  • 29.
    Destoumieux-Garzon, D.; Montagnani, C.; Dantan, L.; et al. Cross-talk and mutual shaping between the immune system and the microbiota during an oyster’s life. Philos. T. R. Soc. B 2024, 379, 20230065.
  • 30.
    Dai, W.; Ye, J.; Liu, S.; et al. Bacterial community dynamics in kumamoto oyster Crassostrea sikamea hatchery during larval development. Front. Microbiol. 2022, 13, 933941.
  • 31.
    Dai, W.; Ye, J.; Xue, Q.; et al. Changes in bacterial communities of kumamoto oyster larvae during their early development and following Vibrio infection resulting in a mass mortality event. Mar. Biotechnol. 2023, 25, 30–44.
  • 32.
    Liu, S.; Xue, Q.; Xu, H.; et al. Identification of main oyster species and comparison of their genetic diversity in Zhejiang coast, south of Yangtze river estuary. Front. Mar. Sci. 2021, 8, 662515.
  • 33.
    Xuan, Y.; Chang, G.; Liu, S.; et al. A comparison of the mitochondrial DNA-based genetic diversity of Kumamoto oyster populations from China, Japan, and the United States. Mar. Sci. 2024, 48, 24–33.
  • 34.
    Wu, X.; Zhang, Y.; Xiao, S.; et al. Comparative studies of the growth, survival, and reproduction of diploid and triploid Kumamoto oyster, Crassostrea sikamea. J. World Aquacult. Soc. 2019, 50, 866–877.
  • 35.
    Ma, H.; Lv, W.; Qin, Y.; et al. Aquaculture potential of two Kumamoto oyster (Crassostrea sikamea) populations and their reciprocal hybrids in southern China. Aquaculture 2022, 546, 737301.
  • 36.
    Zhang, Y.; Qin, Y.; Ma, L.; et al. Gametogenesis from the early history life stages of the Kumamoto oyster Crassostrea sikamea and their breeding potential evaluation. Front. Physiol. 2019, 10, 524.
  • 37.
    Luis-Villasenor, I.E.; Zamudio-Armenta, O.O.; Voltolina, D.; et al. Bacterial communities of the oysters Crassostrea corteziensis and C. sikamea of cospita bay, Sinaloa, Mexico. Rev. Int. Contam. Ambie. 2018, 34, 203–213.
  • 38.
    Zhang, E.; Li, Z.; Dong, L.; et al. Exploration of molecular mechanisms of immunity in the Pacific oyster (Crassostrea gigas) in response to Vibrio alginolyticus invasion. Animals 2024, 14, 1707.
  • 39.
    Munoz, K.; Flores-Herrera, P.; Goncalves, A.T.; et al. The immune response of the scallop Argopecten purpuratus is associated with changes in the host microbiota structure and diversity. Fish Shellfish Immunol. 2019, 91, 241–250.
  • 40.
    Zardinoni, G.; Deb, S.; Ravi, S.; et al. Difference in composition and functional analysis of bacterial communities between Mytilus galloprovincialis gills and surrounding water in a brackish inshore bay, analyzed by 16S rDNA multi-amplicon sequencing. Ann. Microbiol. 2024, 74, 3.
  • 41.
    Varela, J.L.; Nikouli, E.; Medina, A.; et al. The gills and skin microbiota of five pelagic fish species from the Atlantic Ocean. Int. Microbiol. 2025, 28, 95–105.
  • 42.
    Fang, G.; Yu, H.; Zhang, Y.; et al. Diversities and shifts of microbial communities associated with farmed oysters (Crassostrea gigas) and their surrounding environments in Laoshan Bay marine ranching, China. Microorganisms 2023, 11, 1167.
  • 43.
    An, L.; Yan, Y.-C.; Tian, H.-L.; et al. Roles of sulfate-reducing bacteria in sustaining the diversity and stability of marine bacterial community. Front. Microbiol. 2023, 14, 1218828.
  • 44.
    Zhao, Z.; Jiang, J.; Pan, Y.; et al. Temporal dynamics of bacterial communities in the water and sediments of sea cucumber (Apostichopus japonicus) culture ponds. Aquaculture 2020, 528, 735498.
  • 45.
    Chen, S.; Zhou, Y.; Chen, Y.; et al. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890.
  • 46.
    Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963.
  • 47.
    Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996.
  • 48.
    Wang, Q.; Garrity, G.M.; Tiedje, J.M.; et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 2007, 73, 5261–5267.
Share this article:
How to Cite
Fu, S.; Yao, T.; Lu, J.; Peng, J.; Ye, L. Diversity and Interactions of Bacterial Communities in the Gills of Kumamoto Oyster (Crassostrea sikamea) and Its Culture Environment. Aquatic Life and Ecosystems 2025. https://doi.org/10.53941/ale.2025.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.