2510001765
  • Open Access
  • Review

Pathogen-Associated Diseases in Tuna Aquaculture: Current Challenges and Future Research Directions

  • Xuancheng Liu 1,   
  • Junhua Huang 2, 3, 4,   
  • Zhengyi Fu 2, 3, 4,   
  • Zhenhua Ma 2, 3, 4, *,   
  • Jie Chang 1, *

Received: 11 Sep 2025 | Revised: 15 Oct 2025 | Accepted: 22 Oct 2025 | Published: 27 Oct 2025

Abstract

Tuna aquaculture faces significant challenges from various pathogen-associated diseases, including bacterial, fungal, viral, and parasitic infections, which threaten both the health of farmed tuna and the economic viability of the industry. This review provides an overview of the current status of these diseases in tuna farming, with a focus on the pathogenic mechanisms, environmental stressors, and management strategies. Bacterial infections, particularly those caused by Vibrio species and Photobacterium damselae, remain major threats, often exacerbated by environmental stressors such as high water temperatures and poor water quality. Fungal diseases, which impact the gills of yellowfin tuna, and viral diseases, notably Nervous Necrosis Virus (NNV), present additional risks that result in high mortality rates, especially among juvenile fish. Parasitic diseases, including infestations by flatworms like Cardicola forsteri and ectoparasites such as Caligus species, also contribute to significant losses in tuna farming. Despite progress in understanding these pathogens, critical research gaps remain, particularly in the areas of immune system responses, pathogen-host interactions, and the development of sustainable disease control measures. The overuse of antibiotics and chemicals in disease management has led to growing concerns over antimicrobial resistance and environmental pollution. Future research should prioritize integrated disease management systems, including the development of eco-friendly control strategies such as probiotics, immunostimulants, and vaccines. Furthermore, the impact of environmental factors on disease dynamics requires more in-depth investigation, alongside the development of predictive models and real-time monitoring systems for better disease management. Addressing these challenges with a multidisciplinary approach will be crucial to improving the health and productivity of farmed tuna, thereby ensuring the sustainability of the tuna aquaculture industry.

References 

  • 1.
    Pais, G.L.; Meloni, D.; Mudadu, A.G.; et al. Colorimetric analysis and determination of histamine in samples of yellowfin tuna (Thunnus albacares) marketed in Sardinia (Italy) by a combination of rapid screening methods and LC-MS/MS. Foods 2022, 11, 639.
  • 2.
    Wright, S.R.; Righton, D.; Naulaerts, J.; et al. Yellowfin tuna behavioural ecology and catchability in the South Atlantic: The right place at the right time (and depth). Front. Mar. Sci. 2021, 8, 664593.
  • 3.
    Guillen, J.; Asche, F.; Carvalho, N.; et al. How sustainable is tuna aquaculture? A methodology to assess the sustainability of seafood production systems. Front. Aquac. 2024, 3, 1422372.
  • 4.
    Block, B.A.; Dewar, H.; Blackwell, S.B.; et al. Migratory movements, depth preferences, and thermal biology of Atlantic bluefin tuna. Science 2001, 293, 1310–1314.
  • 5.
    Peng, S.; Chen, C.; Shi, Z.; et al. Amino acid and fatty acid composition of the muscle tissue of yellowfin tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus). J. Food Nutr. Res. 2013, 1, 42–45.
  • 6.
    Boon, K.E. Overfishing of bluefin tuna: Incentivizing inclusive solutions. U. Louisville L. Rev. 2013, 52, 1.
  • 7.
    Fonteneau, A. An overview of yellowfin tuna stocks, fisheries and stock status worldwide. In Proceedings of the IOTC 7th Working Party on Tropical Tunas, Phuket, Thailand, 18–22 July 2005.
  • 8.
    Ma, Z.; Wu, S.; Meng, X.; et al. Feeding depths of wild caught yellowfin tuna Thunnus albacores juveniles and skipjack tuna Katsuwonus pelamis in sea cages. Isr. J. Aquac. Bamidgeh 2017, 69, 5.
  • 9.
    Benetti, D.D.; Partridge, G.J.; Stieglitz, J. Overview on status and technological advances in tuna aquaculture around the world. Adv. Tuna Aquac. 2016, 1–19. https://doi.org/10.1016/B978-0-12-411459-3.00001-1.
  • 10.
    Masuma, S.; Takebe, T.; Sakakura, Y. A review of the broodstock management and larviculture of the Pacific northern bluefin tuna in Japan. Aquaculture 2011, 315, 2–8.
  • 11.
    de la Gándara, F.; Ortega, A.; Buentello, A. Tuna aquaculture in Europe. In Advances in Tuna Aquaculture; Elsevier: Amsterdam, The Netherlands, 2016; pp. 115–157.
  • 12.
    Chen, B.N.; Hutchinson, W.; Foster, C. Southern bluefin tuna captive breeding in Australia. In Advances in Tuna Aquaculture; Elsevier: Amsterdam, The Netherlands, 2016; pp. 233–252.
  • 13.
    Nguyen, K.Q.; Phan, H.T.; Tran, P.D.; et al. Length-length, length–weight, and weight-weight relationships of yellowfin (Thunnus albacares) and bigeye (Thunnus obesus) tuna collected from the commercial handlines fisheries in the South China Sea. Thalass. Int. J. Mar. Sci. 2022, 38, 911–917.
  • 14.
    Lujan, M. Tuna Aquaculture: Farming systems, feeding and reproduction.
  • 15.
    Pecoraro, C.; Zudaire, I.; Bodin, N.; et al. Putting all the pieces together: Integrating current knowledge of the biology, ecology, fisheries status, stock structure and management of yellowfin tuna (Thunnus albacares). Rev. Fish Biol. Fish. 2017, 27, 811–841.
  • 16.
    Fu, Z.; Bai, J.; Ma, Z. Physiological Adaptations and Stress Responses of Juvenile Yellowfin Tuna (Thunnus albacares) in Aquaculture: An Integrative Review. Aquat. Life Ecosyst. 2025, 1, 3.
  • 17.
    Sanches-Fernandes, G.M.; Sá-Correia, I.; Costa, R. Vibriosis outbreaks in aquaculture: Addressing environmental and public health concerns and preventive therapies using gilthead seabream farming as a model system. Front. Microbiol. 2022, 13, 904815.
  • 18.
    Kapetanović, D.; Smrzlić, I.V.; Valić, D.; et al. Culturable microbiota associated with farmed Atlantic bluefin tuna (Thunnus thynnus). Aquat. Living Resour. 2017, 30, 30.
  • 19.
    Balli, J.; Mladineo, I.; Shirakashi, S.; et al. Diseases in tuna aquaculture. In Advances in Tuna Aquaculture; Elsevier: Amsterdam, The Netherlands, 2016; pp. 253–272.
  • 20.
    Mugimba, K.K.; Byarugaba, D.K.; Mutoloki, S.; et al. Challenges and solutions to viral diseases of finfish in marine aquaculture. Pathogens 2021, 10, 673.
  • 21.
    Pang, K.-L.; Hassett, B.T.; Shaumi, A.; et al. Pathogenic fungi of marine animals: A taxonomic perspective. Fungal Biol. Rev. 2021, 38, 92–106.
  • 22.
    Tort, L.; Balasch, J.; MacKenzie, S. Fish health challenge after stress. Indicators of immunocompetence. Contrib. Sci. 2004, 2, 443–454.
  • 23.
    Aich, N.; Nama, S.; Biswal, A.; et al. A review on recirculating aquaculture systems: Challenges and opportunities for sustainable aquaculture. Innov. Farming 2020, 5, 17–24.
  • 24.
    Sawada, Y. Aiming for sustainable aquaculture: Full-cycle aquaculture of Pacific bluefin tuna and mottled spinefoot. Jpn. J. Pestic. Sci. 2024, 49, 60–65.
  • 25.
    Mylonas, C.C.; De La Gándara, F.; Corriero, A.; et al. Atlantic bluefin tuna (Thunnus thynnus) farming and fattening in the Mediterranean Sea. Rev. Fish. Sci. 2010, 18, 266–280.
  • 26.
    Clarke, S.M.; Ham, J.M.; Bushell, J.J. Aquafin CRC-FRDC Southern Bluefin Tuna Aquaculture Subprogram: Coordination, Facilitation and Administration; SARDI Aquatic Sciences: Henley Beach, SA, Australia, 2009.
  • 27.
    Taniguchi, A.; Aoki, R.; Inoue, I.; et al. Succession of the intestinal bacterial community in Pacific bluefin tuna (Thunnus orientalis) larvae. PLoS ONE 2022, 17, e0275211.
  • 28.
    Gustinelli, A.; Campana, M.; Caggiano, M.; et al. Observations on health problems in hatchery reared tuna (Thunnus thynnus) in Italy. In Proceedings of the 15 EAFP Diseases of Fish and Shellfish, Split, Croatia, 12–16 September 2011; Abstract Book; Dalmacijapapir: Split, Croatia, 2011; p. 459.
  • 29.
    Lages, M.A.; Balado, M.; Lemos, M.L. The expression of virulence factors in Vibrio anguillarum is dually regulated by iron levels and temperature. Front. Microbiol. 2019, 10, 2335.
  • 30.
    Kapetanovic, D.; Kurtovic, B.; Vardic, I.; et al. Preliminary studies on bacterial diversity of cultured bluefin tuna Thunnus thynnus from the Adriatic Sea. Aquac. Res. 2006, 37, 1265.
  • 31.
    Romalde, J.L. Photobacterium damselae subsp. piscicida: An integrated view of a bacterial fish pathogen. Int. Microbiol. 2002, 5, 3–9.
  • 32.
    Mladineo, I.; Miletić, I.; Bočina, I. Photobacterium damselae subsp. piscicida outbreak in cage-reared Atlantic bluefin tuna Thunnus thynnus. J. Aquat. Anim. Health 2006, 18, 51–54.
  • 33.
    Martyniuk, C.J.; Li, E.; Rise, M.L. Environmental stressors and aquatic animal immune system function. Frontiers 2025, 16, 1610969.
  • 34.
    Scharsack, J.P.; Franke, F. Temperature effects on teleost immunity in the light of climate change. J. Fish Biol. 2022, 101, 780–796.
  • 35.
    Abdel-Aziz, M.; Eissa, A.E.; Hanna, M.; et al. Identifying some pathogenic Vibrio/Photobacterium species during mass mortalities of cultured Gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax) from some Egyptian coastal provinces. Int. J. Vet. Sci. Med. 2013, 1, 87–95.
  • 36.
    Andreoni, F.; Magnani, M. Photobacteriosis: Prevention and diagnosis. J. Immunol. Res. 2014, 2014, 793817.
  • 37.
    Mohammed, E.A.H.; Kovács, B.; Kuunya, R.; et al. Antibiotic Resistance in Aquaculture: Challenges, Trends Analysis, and Alternative Approaches. Antibiotics 2025, 14, 598.
  • 38.
    Wang, X.-Y.; Xie, J. Comparison of physicochemical changes and water migration of acinetobacter johnsonii, Shewanella putrefaciens, and cocultures from spoiled bigeye tuna (Thunnus obesus) during cold storage. Front. Microbiol. 2021, 12, 727333.
  • 39.
    Yi, Z.; Xie, J. Assessment of spoilage potential and amino acids deamination & decarboxylation activities of Shewanella putrefaciens in bigeye tuna (Thunnus obesus). LWT 2022, 156, 113016.
  • 40.
    Suryanti, I.; Widiyanti, N.; Tangguda, S.; et al. In Identification of Microscopic Fungus in Gill of Skipjact Tuna (Katsuwonus pelamis L.) at Traditional Markets in Singaraja-Bali; Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; p. 012002.
  • 41.
    Jeyachandran, S. 2Review on Climate Change, Microbial Resilience, and Disease Risks in Global Aquaculture Systems. Comp. Immunol. Rep. 2025, 9, 200240.
  • 42.
    López-Verdejo, A.; Montero, F.E.; De La Gándara, F.; et al. A severe microsporidian disease in cultured Atlantic Bluefin Tuna (Thunnus thynnus). IMA Fungus 2022, 13, 5.
  • 43.
    Gadoin, E.; Desnues, C.; Monteil-Bouchard, S.; et al. Fishing for the virome of tropical tuna. Viruses 2021, 13, 1291.
  • 44.
    Nishioka, T.; Mori, K.-I.; Sugaya, T.; et al. Involvement of viral nervous necrosis in larval mortality of hatchery-reared Pacific bluefin tuna Thunnus olientalis. Fish Pathol. 2010, 45, 69–72.
  • 45.
    Sugaya, T.; Mori, K.; Nishioka, T.; et al. Genetic heterogeneity of betanodaviruses in juvenile production trials of Pacific bluefin tuna, Thunnus orientalis (Temminck & Schlegel). J. Fish Dis. 2009, 32, 815–824.
  • 46.
    Mladineo, I.; Zilic, J.; Cankovic, M. Health survey of Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758), reared in Adriatic cages from 2003 to 2006. J. World Aquac. Soc. 2008, 39, 281.
  • 47.
    Matsuura, Y.; Nishioka, T.; Satoh, J.; et al. Development of a method for experimental infection of Pacific bluefin tuna with red seabream iridoviral disease. Aquaculture 2021, 539, 736627.
  • 48.
    Páez, D.J.; Powers, R.L.; Jia, P.; et al. Temperature variation and host immunity regulate viral persistence in a salmonid host. Pathogens 2021, 10, 855.
  • 49.
    Olveira, J.G.; Souto, S.; Bandín, I.; et al. Development and validation of a SYBR green real time PCR protocol for detection and quantification of nervous necrosis virus (NNV) using different standards. Animals 2021, 11, 1100.
  • 50.
    Meyer, B.; Emam, W. Welfare implications of closed-cycle farming of Atlantic bluefin tuna (Thunnus thynnus). Front. Anim. Sci. 2024, 5, 1445306.
  • 51.
    Munday, B.; Sawada, Y.; Cribb, T.; et al. Diseases of tunas, Thunnus spp. J. Fish Dis. 2003, 26, 187–206.
  • 52.
    Liu, H.; Fu, Z.; Zhou, S.; et al. The Complete Mitochondrial Genome of Pennella sp. Parasitizing Thunnus albacares. Front. Cell. Infect. Microbiol. 2022, 12, 945152.
  • 53.
    Román-Reyes, J.C.; Ortega-García, S.; Galván-Magaña, F.; et al. First record of Pennella filosa L.(Copepoda, Siphonostomatoida, Pennellidae) parasitising the yellowfin tuna Thunnus albacares (Bonnaterre, 1788) from the Mexican Pacific coast. CABI Databases 2019, 13, 109–114.
  • 54.
    Nagasawa, K.; Ashida, H.; Sato, T. Caligid copepods parasitic on yellowfin tuna, Thunnus albacares, and bigeye tuna, Thunnus obesus, in the western North Pacific Ocean off central Japan, with a list of parasitic copepods of tunas (Auxis spp., Euthynnus affinis, Katsuwonus pelamis, and Thunnus spp.) in Japan (1894–2018). Nat. Kagoschima 2018, 45, 37–42.
  • 55.
    Yuasa, K.; Kamaishi, T.; Mori, K.-I.; et al. Infection by a protozoan endoparasite of the genus Ichthyodinium in embryos and yolk-sac larvae of yellowfin tuna Thunnus albacares. Fish Pathol. 2007, 42, 59–66.
  • 56.
    Carabott, M.J.; Power, C.; Widdicombe, M.; et al. Dynamics of Cardicola spp. infection in ranched Southern bluefin tuna: First observation of C. orientalis at transfer. Pathogens 2023, 12, 1443.
  • 57.
    Dennis, M.; Landos, M.; D’Antignana, T. Case–control study of epidemic mortality and Cardicola forsteri–associated disease in farmed Southern Bluefin Tuna (Thunnus maccoyii) of South Australia. Vet. Pathol. 2011, 48, 846–855.
  • 58.
    Shirakashi, S.; Tani, K.; Ishimaru, K.; et al. Discovery of intermediate hosts for two species of blood flukes Cardicola orientalis and Cardicola forsteri (Trematoda: Aporocotylidae) infecting Pacific bluefin tuna in Japan. Parasitol. Int. 2016, 65, 128–136.
  • 59.
    Hayward, C.; Bott, N.; Nowak, B. Seasonal epizootics of sea lice, Caligus spp., on southern bluefin tuna, Thunnus maccoyii (Castelnau), in a long-term farming trial. J. Fish Dis. 2009, 32, 101–106.
  • 60.
    Deveney, M.; Bayly, T.; Johnston, C.; et al. A parasite survey of farmed Southern bluefin tuna, Thunnus maccoyii (Castelnau). J. Fish Dis. 2005, 28, 279–284.
  • 61.
    Buchmann, K. Control of parasitic diseases in aquaculture. Parasitology 2022, 149, 1985–1997.
  • 62.
    Huang, J.; Fu, Z.; Wang, Q.; et al. Comprehensive analysis of the complete mitochondrial genome of Didymozoidae parasites infecting yellowfin tuna (Thunnus albacares). Isr. J. Aquac. Bamidgeh 2025, 77, 33–44.
  • 63.
    Tian, L.; Fang, G.; Li, G.; et al. Metagenomic approach revealed the mobility and co-occurrence of antibiotic resistomes between non-intensive aquaculture environment and human. Microbiome 2024, 12, 107.
  • 64.
    Tammas, I.; Bitchava, K.; Gelasakis, A.I. Transforming aquaculture through vaccination: A review on recent developments and milestones. Vaccines 2024, 12, 732.
  • 65.
    Nik Mohamad Nek Rahimi, N.; Natrah, I.; Loh, J.-Y.; et al. Phytocompounds as an alternative antimicrobial approach in aquaculture. Antibiotics 2022, 11, 469.
  • 66.
    Larsen, A.K.; Holen, E.; Segner, H. Immunity and disease of aquatic organisms under the combined impact of anthropogenic stressors: Mechanisms and disease outcomes. Front. Media SA 2023, 10, 1291639.
  • 67.
    Yasruddin, M.; Husin, Z.; Ismail, M.; et al. Smart aquaculture: An advanced intelligent predictive analysis of disease risks and recommendation system for managing fish health. Neural Comput. Appl. 2025, 27, 14499–14520.
  • 68.
    Behera, B.K. Recent Developments in Biosensor Technology for Fisheries and Aquaculture. In Biotechnological Tools in Fisheries and Aquatic Health Management; Spring: Berlin/Heidelberg, Germany, 2023; pp. 1–14.
  • 69.
    Bohara, K.; Yadav, A.K.; Joshi, P. Detection of fish pathogens in freshwater aquaculture using eDNA methods. Diversity 2022, 14, 1015.
Share this article:
How to Cite
Liu, X.; Huang, J.; Fu, Z.; Ma, Z.; Chang, J. Pathogen-Associated Diseases in Tuna Aquaculture: Current Challenges and Future Research Directions. Aquatic Life and Ecosystems 2025. https://doi.org/10.53941/ale.2025.100006.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.