2512002585
  • Open Access
  • Review

Advances in Sturgeon Nutrition for Sustainable Aquaculture

  • Bindiya Sharma 1,2

Received: 05 Aug 2025 | Revised: 26 Nov 2025 | Accepted: 26 Dec 2025 | Published: 11 Feb 2026

Abstract

Sturgeon aquaculture is one of the rapidly advancing sectors globally. For sustainable production and growth, it is essential to understand the nutritional requirements. This review presents ancient knowledge and recent advances on the dietary requirements of sturgeon. It aims to critically evaluate the progress and innovations over the past 25 years. The review synthesizes key findings from published papers and journals, highlighting sturgeon dietary requirements, alternative feed ingredients, commercial and functional feeds, and feeding strategies crucial to achieving economic viability and sustainability in sturgeon farming. It showcases the transition from fishmeal diets to alternative protein diets, aiming to minimize environmental impact and improve economic viability. It also discusses the integration of sustainable frameworks, such as the circular economy, One Health, and AI technology. Some research gaps include species-specific nutritional requirements, digestibility studies, the long-term impact of alternative protein diets, and the integration of AI technologies to optimize the sustainability and productivity of sturgeon aquaculture.

References 

  • 1.

    Anderson, W.G.; Schreier, A.; Crossman, J.A. Chapter 2—Conservation Aquaculture—A Sturgeon Story. In Fish Physiology; Fangue, N.A., Cooke, S.J., Farrell, A.P., Eds.; Academic Press: London, UK, 2022; Volume 39, pp. 39–109.

  • 2.

    Caviar. The Role of Sturgeon in Caviar Production. Available online: https://www.1caviar.com/2025/04/21/the-role-of-sturgeon-in-caviar-production (accessed on 21 April 2025).

  • 3.

    Saaee Aquaculture. History of Sturgeon. Available online: https://saaee-aquaculture.com/en/blog/2/history-of-sturgean (accessed on 6 February 2025). 

  • 4.

    Hung, S.S.O. Recent Advances in Sturgeon Nutrition. Anim. Nutr. 2017, 3, 191–204.

  • 5.

    Zarantoniello, M.; Randazzo, B.; Nozzi, V.; et al. Physiological Responses of Siberian Sturgeon (Acipenser baerii) Juveniles Fed on Full-Fat Insect-Based Diet in an Aquaponic System. Sci. Rep. 2021, 11, 1057.

  • 6.

    Mugue, N.; Friedrich, T.; Chebanov, M.; et al. Acipenser stellatus; The IUCN Red List of Threatened Species: Gland, Switzerland, 2022.

  • 7.

    Federation of European Aquaculture Producers. The Caviar Market: Production, Trade, and Trends; FEAP: Brussels, Belgium, 2021. Available online: https://feap.info/wp-content/uploads/2021/05/2021-the-caviar-market.pdf (accessed on 6 February 2025). 

  • 8.

    EUMOFA. Production, Trade, and Consumption in and Outside the EU. An Update of the 2018-Report; Publications Office of the European Union: Luxembourg, 2021; p. 42.

  • 9.

    Tavakoli, S.; Luo, Y.; Regenstein, J.M.; et al. Sturgeon, Caviar, and Caviar Substitutes: From Production, Gastronomy, Nutrition, and Quality Change to Trade and Commercial Mimicry. Rev. Fish. Sci. Aquac. 2021, 29, 753–768. https://doi.org/10.1080/23308249.2021.1873244.

  • 10.

    San Diego Supercomputer Center. New AI Technology Aims to Revolutionize Fish Farming. Available online: https://www.sdsc.edu/news/2025/PR20250423-aquaculture.html (accessed on 11 November 2025).

  • 11.

    Bronzi, P.; Chebanov, M.; Michaels, J.T.; et al. Sturgeon Meat and Caviar Production: Global Update 2017. J. Appl. Ichthyol. 2019, 35, 257–266.

  • 12.

    Prabu, E.; Felix, S.; Felix, N.; et al. An Overview on Significance of Fish Nutrition in Aquaculture Industry. Int. J. Fish. Aquat. Stud. 2017, 5, 349–355.

  • 13.

    Long, X.; Wang, L.; Li, Y.; et al. Effects of Long-Term Haematococcus pluvialis Astaxanthin Feeding on the Growth, Coloration, and Antioxidant Capacity of Commercial-Sized Oncorhynchus mykiss. Aquac. Rep. 2023, 30, 101603.

  • 14.

    Kolman, R.; Kapusta, A. Food Characteristics and Feeding Management on Sturgeon with a Special Focus on the Siberian Sturgeon. In The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 2—Farming; Williot, P., Nonnotte, G., Chebanov, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 75–84.

  • 15.

    Pailan, G.H.; Biswas, G. Advances in Nutrient Resource Management for Fisheries and Aquaculture. In Agriculture, Livestock Production and Aquaculture: Advances for Smallholder Farming Systems Volume 2; Springer: Cham, Switzerland, 2022; pp. 291–311.

  • 16.

    Mashood, Z.; Rawski, M.; Kierończyk, B.; et al. Evaluation of the Application and Environmental Sustainability of Alternative Feed Materials in Sturgeon Nutrition. A Review. J. Anim. Feed Sci. 2024, 34, 3–9.

  • 17.

    Chebanov, M.S.; Galich, E.V. Sturgeon Hatchery Manual; FAO Fisheries and Aquaculture Technical Paper No. 558; FAO: Rome, Italy, 2013; pp. 1–17.

  • 18.

    Daprà, F.; Gai, F.; Costanzo, M.T.; et al. Rice Protein-Concentrate Meal as a Potential Dietary Ingredient in Practical Diets for Blackspot Seabream Pagellus bogaraveo: A Histological and Enzymatic Investigation. J. Fish Biol. 2009, 74, 773–789.

  • 19.

    Zheng, Y.; Guo, C.; Li, L.; et al. Unique Morphology and Mechanical Property of Chinese Sturgeon (Acipenser sinensis) Fish Skin. IET Nanobiotechnol. 2020, 14, 281–288.

  • 20.

    Mohseni, M.; Sajjadi, M.; Pourkazemi, M. Growth Performance and Body Composition of Sub-Yearling Persian Sturgeon, (Acipenser persicus, Borodin, 1897), Fed Different Dietary Protein and Lipid Levels. J. Appl. Ichthyol. 2007, 23, 204–208.

  • 21.

    Guo, Z.; Zhu, X.; Liu, J.; et al. Dietary Lipid Requirement of Juvenile Hybrid Sturgeon, Acipenser baerii ♀ × A. gueldenstaedtii ♂. J. Appl. Ichthyol. 2011, 27, 743–748.

  • 22.

    Elhetawy, A.; Vasilyeva, L.; Sudakova, N.; et al. Sturgeon Aquaculture Potentiality in Egypt in View of the Global Development of Aquaculture and Fisheries Conservation Techniques: An Overview and Outlook. Aquat. Sci. Eng. 2023, 38, 222–231.

  • 23.

    Pelic, M.; Knezevic, S.V.; Balos, M.Z.; et al. Fatty Acid Composition of Acipenseridae–Sturgeon Fish. IOP Conf. Ser. Earth Environ. Sci. 2019, 333, 012009.

  • 24.

    Li, Z.; Xie, K.; Gu, J.; et al. An Evaluation of Soybean Protein Concentrate as a Replacement for Fish Meal with Methionine Supplementation in Diets for Hybrid Sturgeon (Acipenser baerii ♀ × A. schrenckii ♂). Animals 2025, 15, 787.

  • 25.

    Hung, S.S.O. Carbohydrate Utilization by White Sturgeon (Acipenser transmontanus) as Assessed by Growth Performance and Plasma Glucose Concentration. Comp. Biochem. Physiol. Part A Physiol. 1991, 98, 543–548.

  • 26.

    Liu, Q.; Naganuma, T. Effects of Lactic Acid and Betaine as Feed Additives on Metabolomic Profiles of Juvenile Bester Sturgeon (Acipenser ruthenus × Huso huso). J. Food Nutr. Res. 2025, 13, 18–33.

  • 27.

    Rad, F.; Köksal, G.; Kindir, M. Growth Performance and Food Conversion Ratio of Siberian Sturgeon (Acipenser baerii Brandt) at Different Daily Feeding Rates. Turk. J. Vet. Anim. Sci. 2003, 27, 1085–1090.

  • 28.

    Glencross, B.D. A Feed Is Still Only as Good as Its Ingredients: An Update on the Nutritional Research Strategies for the Optimal Evaluation of Ingredients for Aquaculture Feeds. Aquac. Nutr. 2020, 26, 1871–1883.

  • 29.

    Ameixa, O.M.C.C.; Duarte, P.M.; Rodrigues, D.P. Insects, Food Security and Sustainable Aquaculture. In Zero Hunger; Leal Filho, W., Azul, A.M., Brandli, L., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–11.

  • 30.

    Aragão, C.; Gonçalves, A.T.; Costas, B.; et al. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals 2022, 12, 1211.

  • 31.

    Zlaugotne, B.; Pubule, J.; Blumberga, D. Advantages and Disadvantages of Using More Sustainable Ingredients in Fish Feed. Heliyon 2022, 8, e10527.

  • 32.

    Xue, M.; Yun, B.; Wang, J.; et al. Performance, Body Compositions, Input and Output of Nitrogen and Phosphorus in Siberian Sturgeon, Acipenser baerii Brandt, as Affected by Dietary Animal Protein Blend Replacing Fishmeal and Protein Levels. Aquac. Nutr. 2012, 18, 493–501.

  • 33.

    Yun, B.; Xue, M.; Wang, J.; et al. Fishmeal Can Be Totally Replaced by Plant Protein Blend at Two Protein Levels in Diets of Juvenile Siberian Sturgeon, Acipenser baerii Brandt. Aquac. Nutr. 2014, 20, 69–78.

  • 34.

    Ozherelyeva, N.O.; Sytolkin, A.A.; Vasilenko, L.I.; et al. Compound Feed Technology in Sturgeon Fish Aquiculture. KnE Life Sci. 2020, 5, 194–202.

  • 35.

    Kok, B.; Malcorps, W.; Tlusty, M.F.; et al. Fish as Feed: Using Economic Allocation to Quantify the Fish In: Fish Out Ratio of Major Fed Aquaculture Species. Aquaculture 2020, 528, 735474.

  • 36.

    Newton, R.W.; Malcorps, W.; Robinson, J.P.W.; et al. Fish as Feed: Using the Nutrient Fish In: Fish Out Ratio (nFIFO) to Enhance Nutrient Retention in Aquaculture. Aquaculture 2025, 602, 742332.

  • 37.

    Stroe Dudu, A.; Georgescu, S.E. Exploring the Multifaceted Potential of Endangered Sturgeon: Caviar, Meat and By-Product Benefits. Animals 2024, 14, 2425.

  • 38.

    2022–2023 Sturgeon. Available online: https://www.alltechcoppens.com/uploads/EN-STURGEON-2023.pdf?v=1675341129 (accessed on 8 February 2025). 

  • 39.

    Dimedium. Tuura Kasvatus Programm [Sturgeon Farming Program]. Available online: https://www.dimedium.ee/sites/default/files/files/Tuura_kasvatusprogramm.pdf (accessed on 8 February 2025). 

  • 40.

    Zeigler Feed Manufacturing. Sturgeon Aquaculture Feeds. Available online: https://zeiglerfeed.com/feed-products/fin-fish-aquaculture-feed/finfish-aquaculture-feeds/sturgeon-feeds (accessed on 8 February 2025). 

  • 41.

    Zhu, Y.; Wu, J.; Leng, X.; et al. Metabolomics and Gene Expressions Revealed the Metabolic Changes of Lipid and Amino Acids and the Related Energetic Mechanism in Response to Ovary Development of Chinese Sturgeon (Acipenser sinensis). PLoS ONE 2020, 15, e0235043.

  • 42.

    Zhang, X.; Zhu, Y.; Wei, H.; et al. Effects of Low-Protein-High-Starch Diet on Growth Performance, Glucose and Lipid Metabolism of Amur Sturgeon (Acipenser schrenckii) during Feeding and Starvation Phases. Aquaculture 2023, 562, 738739.

  • 43.

    Zhang, W.; Liu, S.; Wang, S.; et al. Comprehensive Assessment of Rapeseed Meal as a Fish Meal Substitute in Hybrid Sturgeon (Acipenser schrenckii ♀ × Acipenser baerii ♂) Diets: Impacts on Growth Performance, Body Composition, Immunological Responses, Intestinal Histology, and Inflammatory Response. Aquac. Nutr. 2025, 2025, 6415465.

  • 44.

    Lee, S.; Zhao, H.; Li, Y.; et al. Evaluation of Formulated Feed for Juvenile Lake Sturgeon Based on Growth Performance and Nutrient Retention. N. Am. J. Aquac. 2018, 80, 223–236.

  • 45.

    Leal, M.C.; Calado, R. The Key Role of Functional Aquafeeds to Achieve a More Sustainable Aquaculture. J. World Aquac. Soc. 2019, 50, 1044–1047.

  • 46.

    Bledsoe, J.W.; Pietrak, M.R.; Burr, G.S.; et al. Functional Feeds Marginally Alter Immune Expression and Microbiota of Atlantic Salmon (Salmo salar) Gut, Gill, and Skin Mucosa though Evidence of Tissue-Specific Signatures and Host–Microbe Coadaptation Remain. Anim. Microbiome 2022, 4, 20.

  • 47.

    Zuberi, A.; Kamran, M.; Younus, N.; et al. Functional Feed Additives: Current Trends. Front. Aquac. 2024, 3, 1385508.

  • 48.

    Liu, Q.; Naganuma, T.; Ueno, A.; et al. Effects of Byproduct Lactic Acid and Byproduct Betaine as Feed Additives on the Metabolomic Profiles of Blood, Meat, and Fat Tissue of Juvenile Bester Sturgeon (Acipenser ruthenus × Huso huso). J. Food Nutr. Res. 2025, 13, 146–155.

  • 49.

    Bongiorno, T.; Foglio, L.; Proietti, L.; et al. Hydrolyzed Microalgae from Biorefinery as a Potential Functional Ingredient in Siberian Sturgeon (A. baerii Brandt) Aquafeed. Algal Res. 2022, 62, 102592.

  • 50.

    Ghiasi, S.; Falahatkar, B.; Sajjadi, M. Effect of Dietary Flaxseed Meal on Growth, Blood Biochemistry, Reproductive Hormones and Oocyte Development in Previtellogenic Siberian Sturgeon (Acipenser baerii Brandt, 1869). Anim. Feed Sci. Technol. 2023, 295, 115546.

  • 51.

    Barbacariu, C.A.; Dumitru, G.; Dîrvariu, L.; et al. The Use of Wheat Grass Juice as a Promising Functional Feed Additive for Enhancing Reproductive Performance and Larvae Quality of Sterlet (Acipenser ruthenus). Anim. Reprod. Sci. 2025, 274, 107796.

  • 52.

    Osepchuk, D.V.; Yurina, N.A.; Yurin, D.A.; et al. Liver Condition and Blood Biochemical Value of Sturgeon Fish When Fed Combined Feed with Increased Fat Content. J. Livest. Sci. 2021, 12, 312–316.

  • 53.

    Gisbert, E. The Importance of Water Quality in Siberian Sturgeon Farming: Nitrite Toxicity. In The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 1—Biology; Williot, P., Nonnotte, G., Vizziano-Cantonnet, D., Eds.; Springer: Cham, Switzerland, 2018; pp. 449–462.

  • 54.

    Agh, N.; Noori, F.; Irani, A.; et al. Fine Tuning of Feeding Practices for Hatchery Produced Persian Sturgeon, Acipenser persicus and Beluga Sturgeon, Huso huso. Aquac. Res. 2013, 44, 335–344.

  • 55.

    Lee, S.; Zhai, S.; Deng, D.; et al. Feeding Strategies for Adapting Lake Sturgeon (Acipenser fulvescens) Larvae to Formulated Diets at Early Life Stages. Animals 2022, 12, 3128.

  • 56.

    Lujan, M. Aquaculture Feeders: Optimizing Feeding in the Industry. Available online: https://aquahoy.com/aquaculture-feeders-optimizing-feeding-industry/ (accessed on 11 November 2025).

  • 57.

    Hu, J.; Lin, K.; Zhang, S.; et al. Method for Non-Contact Measuring the Weight of Sturgeon in Intensive Aquaculture. Fishes 2024, 9, 458.

  • 58.

    Stentiford, G.D.; Bateman, I.J.; Hinchliffe, S.J.; et al. Sustainable Aquaculture through the One Health Lens. Nat. Food 2020, 1, 468–474.

  • 59.

    Bilardello, G. One Health and Aquaculture: An Integrated Approach for a Sustainable Future. Available online: https://www.bluelifehub.com/2025/04/04/one-health-and-aquaculture-an-integrated-approach-for-a-sustainable-future/ (accessed on 11 November 2025).

  • 60.

    Bass, D.; Baron, S.; Travers, M.-A.; et al. One Health in Fish and Shellfish. Bull. Eur. Assoc. Fish Pathol. 2024, 45, 18.

  • 61.

    Fotodimas, I.; Vidalis, K.L.; Logothetis, P.; et al. Circular Economy Applications: The Sustainable Utilisation of Fish By-Products for Seafood Production and Its Impact on Human Health. Adv. Biosci. Biotechnol. 2025, 16, 305–331.

  • 62.

    Cristea, D.S.; Gavrilă, A.A.; Petrea, Ş.M.; et al. The Use of Artificial Intelligence in Sturgeon Aquaculture. Amfiteatru Econ. 2024, 26, 957–974.

  • 63.

    Bronzi, P.; Rosenthal, H. Present and Future Sturgeon and Caviar Production and Marketing: A Global Market Overview. J. Appl. Ichthyol. 2014, 30, 1536–1546.

Share this article:
How to Cite
Sharma, B. Advances in Sturgeon Nutrition for Sustainable Aquaculture. Aquatic Life and Ecosystems 2026, 2 (1), 4. https://doi.org/10.53941/ale.2026.100004.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.