2512002593
  • Open Access
  • Review

Brain Aging, Neurohormesis and Neuronutrition: Defining Neuroprotective Strategies

  • Anastasiia Badaeva 1,   
  • Alexey Danilov 2,   
  • Anastasiia Kosareva 2,   
  • Carlotta Girlando 3,   
  • Antonio Trapanotto 3,   
  • Alena Sidenkova 4,   
  • Damiano Galimberti 5,   
  • Luay Rashan 6,*,   
  • Uwe Wenzel 7,   
  • Edward J. Calabrese 8,   
  • Vittorio Calabrese 3

Received: 29 Aug 2025 | Revised: 22 Dec 2025 | Accepted: 22 Dec 2025 | Published: 23 Dec 2025

Abstract

Aging is accompanied by a decline in adaptive stress responses, increasing susceptibility to neurodegenerative processes driven by oxidative stress, mitochondrial dysfunction, impaired proteostasis, and chronic inflammation. Hormesis—a biphasic dose–response to low-intensity stressors—has emerged as a central biological strategy for enhancing cellular resilience across multiple systems, including the nervous system. This review highlights neurohormesis as a key mechanism of neuronal protection, wherein subtoxic stimuli activate cytoprotective pathways such as NRF2/ARE, heat shock proteins, and vitagene networks, promoting neuroplasticity and delaying cognitive decline. In parallel, the evolving discipline of neuronutrition offers a complementary strategy by utilizing specific nutrients and bioactive compounds (e.g., polyphenols, magnesium, omega-3 fatty acids) that act as mild stressors or modulators of adaptive signaling. These compounds influence mitochondrial bioenergetics, redox regulation, and neuroinflammatory pathways, often mediated through the gut–brain axis. The synergy between hormesis and neuronutrition provides a systems-level, personalized framework for promoting brain health, enhancing functional longevity, and preventing or attenuating age-related neurodegenerative disorders. In contrast to earlier reviews that have treated neurohormesis and neuronutrition in isolation, the present article offers a novel, systems-level integration of both paradigms under a unified strategy for personalized neuroprotection, with a specific emphasis on the gut-brain axis and microbiota as pivotal regulators of adaptive signaling.

References 

  • 1.

    Muth, A.K.; Park, S.Q. The impact of dietary macronutrient intake on cognitive function and the brain. Clin. Nutr. 2021, 40, 3999–4010.

  • 2.

    Vijiaratnam, N.; Simuni, T.; Bandmann, O.; et al. Progress towards Therapies for Disease Modification in Parkinson’s Disease. Lancet Neurol. 2021, 20, 559–572.

  • 3.

    Abla, K.K.; Mehanna, M.M. The Battle of Lipid-Based Nanocarriers against Blood-Brain Barrier: A Critical Review. J. Drug Target. 2023, 31, 832–857.

  • 4.

    Aboouf, M.A.; Thiersch, M.; Soliz, J.; et al. The Brain at High Altitude: From Molecular Signaling to Cognitive Performance. Int. J. Mol. Sci. 2023, 24, 10179.

  • 5.

    Saul, D.; Kosinsky, R.L. Epigenetics of Aging and Aging-Associated Diseases. Int. J. Mol. Sci. 2021, 22, 401.

  • 6.

    Kim, C.; Lv, G.; Lee, J.S.; et al. Exposure to Bacterial Endotoxin Generates a Distinct Strain of α-Synuclein Fibril. Sci. Rep. 2016, 6, 30891.

  • 7.

    Li, J.; Le, W. Modeling Neurodegenerative Diseases in Caenorhabditis elegans. Exp. Neurol. 2013, 250, 94–103.

  • 8.

    Zhang, X.X.; Tian, Y.; Wang, Z.T.; et al. The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J. Prev. Alzheimer’s Dis. 2021, 8, 313–321.

  • 9.

    Ionescu-Tucker, A.; Cotman, C.W. Emerging Roles of Oxidative Stress in Brain Aging and Alzheimer’s Disease. Neurobiol. Aging 2021, 107, 86–95.

  • 10.

    Pramanik, S.; Devi, M.H.; Chakrabarty, S.; et al. Microglia Signaling in Health and Disease—Implications in Sex-Specific Brain Development and Plasticity. Neurosci. Biobehav. Rev. 2024, 165, 105834.

  • 11.

    Calabrese, V.; Giordano, J.; Ruggieri, M.; et al. Hormesis, Cellular Stress Response, and Redox Homeostasis in Autism Spectrum Disorders. J. Neurosci. Res. 2016, 94, 1488–1498.

  • 12.

    Calabrese, E.J.; Dhawan, G.; Kapoor, R.; et al. Hormesis: A fundamental concept with widespread biological and biomedical applications. Gerontology 2016, 62, 530–535.

  • 13.

    Calabrese, E.J.; Calabrese, V.; Giordano, J. The role of hormesis in the functional performance and protection of neural systems. Brain Circ. 2017, 3, 1–13.

  • 14.

    Calabrese, E.J.; Mattson, M.P.; Dhawan, G.; et al. Hormesis: A potential strategic approach to the treatment of neurodegenerative disease. Int. Rev. Neurobiol. 2020, 155, 271–301.

  • 15.

    Mattson, M.P. Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann. N. Y. Acad. Sci. 2008, 1144, 97–112.

  • 16.

    Calabrese, V.; Scuto, M.; Salinaro, A.T.; et al. Hydrogen sulfide and carnosine: Modulation of oxidative stress and inflammation in kidney and brain axis. Antioxidants 2020, 9, 1303.

  • 17.

    Calabrese, V.; Trovato, A.; Scuto, M.; et al. Resilience Signaling and Hormesis in Brain Health and Disease. In Human Aging—From Cellular Mechanisms to Therapeutic Strategies; Academic Press: San Diego, CA, USA, 2021; pp. 155–172.

  • 18.

    Crump, T. Contemporary medicine as presented by its practitioners themselves, Leipzig, 1923. Nonlinearity Biol. Toxicol. Med. 2003, 1, 295–318.

  • 19.

    Calabrese, V.; Giordano, J.; Signorile, A.; et al. Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. J. Neurosci. Res. 2016, 94, 1588–1603.

  • 20.

    Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; et al. Vitagenes, cellular stress response and acetylcarnitine: Relevance to hormesis. Biofactors 2009, 35, 146–160.

  • 21.

    Calabrese, E.J.; Pressman, P.; Hayes, A.W.; et al. The chemoprotective hormetic effects of rosmarinic acid. Open Med. 2024, 19, 20241065.

  • 22.

    Calabrese, E.J.; Blain, R.B. The hormesis database: The occurrence of hormetic dose responses in the toxicological literature. Regul. Toxicol. Pharmacol. 2011, 61, 73–81.

  • 23.

    Calabrese, E.J.; Tsatsakis, A.; Agathokleous, E.; et al. Does green tea induce hormesis? Dose Response 2020, 18, 1559325820936170.

  • 24.

    Calabrese, E.J.; Calabrese, V. Enhancing health span: Muscle stem cells and hormesis. Biogerontology 2022, 23, 151–167.

  • 25.

    Segev-Amzaleg, N.; Trudler, D.; Frenkel, D. Preconditioning to mild oxidative stress mediates astroglial neuroprotection in an IL-10-dependent manner. Brain Behav. Immun. 2013, 30, 176–185.

  • 26.

    Vaiserman, A.; Cuttler, J.M.; Socol, Y. Low-dose ionizing radiation as a hormetin: Experimental observations and therapeutic perspective for age-related disorders. Biogerontology 2021, 22, 145–164.

  • 27.

    Calabrese, E.; Hayes, A.W.; Pressman, P.; et al. Polyamines and hormesis: Making sense of a dose response dichotomy. Chem. Biol. Interact. 2023, 386, 110748.

  • 28.

    Pennisi, M.; Crupi, R.; Di Paola, R.; et al. Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. J. Neurosci. Res. 2017, 95, 1360–1372.

  • 29.

    Calabrese, E.J.; Dhawan, G.; Kapoor, R.; et al. Hormesis: Wound healing and keratinocytes. Pharmacol. Res. 2022, 183, 106393.

  • 30.

    Averbeck, D.; Rodriguez-Lafrasse, C. Role of mitochondria in radiation responses: Epigenetic, metabolic, and signaling impacts. Int. J. Mol. Sci. 2021, 22, 11047.

  • 31.

    Narasimhamurthy, R.K.; Mumbrekar, K.D.; Satish Rao, B.S. Effects of low dose ionizing radiation on the brain- a functional, cellular, and molecular perspective. Toxicology 2022, 465, 153030.

  • 32.

    Calabrese, E.J.; Pressman, P.; Hayes, A.W.; et al. Lithium and hormesis: Enhancement of adaptive responses and biological performance via hormetic mechanisms. J. Trace Elem. Med. Biol. 2023, 78, 127156.

  • 33.

    Oo, J.A.; Brandes, R.P.; Leisegang, M.S. Long non-coding RNAs: Novel regulators of cellular physiology and function. Pflügers Arch. 2022, 474, 191–204.

  • 34.

    Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; et al. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020, 11, 694.

  • 35.

    Akki, R.; Siracusa, R.; Cordaro, M.; et al. Adaptation to oxidative stress at cellular and tissue level. Arch. Physiol. Biochem. 2022, 128, 521–531.

  • 36.

    Li, X.; Zhao, W.; Chen, J.; et al. Dosage impact of submerged plants extracts on Microcystis aeruginosagrowth: From hormesis to inhibition. Ecotoxicol. Environ. Saf. 2023, 268, 115703.

  • 37.

    Mattson, M.P. Lifelong brain health is a lifelong challenge: From evolutionary principles to empirical evidence. Ageing Res. Rev. 2015, 20, 37–45.

  • 38.

    Gidday, J.M. Extending injury- and disease-resistant CNS phenotypes by repetitive epigenetic conditioning. Front. Neurol. 2015, 6, 42.

  • 39.

    Ma, L.; Shi, H.; Li, Y.; et al. Hypertrophic preconditioning attenuates myocardial ischemia/reperfusion injury through the deacetylation of isocitrate dehydrogenase 2. Sci. Bull. 2021, 66, 2099–2114.

  • 40.

    Aron-Wisnewsky, J.; Warmbrunn, M.V.; Nieuwdorp, M.; et al. Metabolism and metabolic disorders and the microbiome: The intestinal microbiota associated with obesity, lipid metabolism, and metabolic health-pathophysiology and therapeutic strategies. Gastroenterology 2021, 160, 573–599.

  • 41.

    Brager, A.J.; Demiral, S.; Choynowski, J.; et al. Earlier shift in race pacing can predict future performance during a single-effort ultramarathon under sleep deprivation. Sleep Sci. 2020, 13, 25–31.

  • 42.

    Aslam, S.P.; Leslie, S.W.; Morris, J. Nicotine Addiction and Smoking: Health Effects and Interventions. Available online: https://www.ncbi.nlm.nih.gov/books/NBK537066/ (accessed on 8 August 2024).

  • 43.

    Izzo, C.; Carrizzo, A.; Alfano, A.; et al. The impact of aging on cardio and cerebrovascular diseases. Int. J. Mol. Sci. 2018, 19, 481.

  • 44.

    Chelluboina, B.; Cho, T.; Park, J.S.; et al. Intermittent fasting induced cerebral ischemic tolerance altered gut microbiome and increased levels of short-chain fatty acids to a beneficial phenotype. Neurochem. Int. 2024, 178, 105795.

  • 45.

    Pellizzon, M.A.; Ricci, M.R. Choice of laboratory rodent diet may confound data interpretation and reproducibility. Curr. Dev. Nutr. 2020, 4, nzaa031.

  • 46.

    Li, Y.; Tian, X.; Luo, J.; et al. Molecular mechanisms of aging and anti-aging strategies. Cell Commun. Signal. 2024, 22, 285.

  • 47.

    Havdal, L.B.; Bøås, H.; Bekkevold, T.; et al. Risk factors associated with severe disease in respiratory syncytial virus infected children under 5 years of age. Front. Pediatr. 2022, 10, 1004739.

  • 48.

    Mammas, I.N.; Drysdale, S.B.; Rath, B.; et al. Update on current views and advances on RSV infection (Review). Int. J. Mol. Med. 2020, 46, 509–520.

  • 49.

    Herndon, L.A.; Schmeissner, P.J.; Dudaronek, J.M.; et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 2002, 419, 808–814.

  • 50.

    Bolanowski, M.A.; Russell, R.L.; Jacobson, L.A. Quantitative measures of aging in the nematode Caenorhabditis elegans: I. Population and longitudinal studies of two behavioral parameters. Mech. Ageing Dev. 1981, 15, 279–295.

  • 51.

    Taki, Y.; Thyreau, B.; Kinomura, S.; et al. A longitudinal study of the relationship between personality traits and the annual rate of volume changes in regional gray matter in healthy adults. Hum. Brain Mapp.2013, 34, 3347–3353.

  • 52.

    Glenn, C.F.; Chow, D.K.; David, L.; et al. Behavioral deficits during early stages of aging in Caenorhabditis elegans result from locomotory deficits possibly linked to muscle frailty. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 1251–1260.

  • 53.

    Kyriakou, E.; Taouktsi, E.; Syntichaki, P. The thermal stress coping network of the nematode Caenorhabditis elegans. Int. J. Mol. Sci. 2022, 23, 14907.

  • 54.

    Yoo, K.; Rosenberg, M.D.; Hsu, W.T.; et al. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets. Neuroimage 2018, 167, 11–22.

  • 55.

    Emamzadeh, F.N.; Surguchov, A. Parkinson’s disease: Biomarkers, treatment, and risk factors. Front. Neurosci. 2018, 12, 612.

  • 56.

    Ganner, A.; Gerber, J.; Ziegler, A.K.; et al. CBP-1/p300 acetyltransferase regulates SKN-1/Nrf cellular levels, nuclear localization, and activity in C. elegans. Exp. Gerontol. 2019, 126, 110690.

  • 57.

    Siswanto, F.M.; Handayani, M.D.N.; Firmasyah, R.D.; et al. Hypoxia-reoxygenation extends the lifespan of Caenorhabditis elegans via SKN-1- and DAF-16A-dependent stress hormesis. Curr. Aging Sci. 2025, 18, 163–173.

  • 58.

    Ramatchandirane, M.; Rajendran, P.; Athira, M.P.; et al. Coniferaldehyde activates autophagy and enhances oxidative stress resistance and lifespan of Caenorhabditis elegans via par-4/aak-2/skn-1 pathway. Biogerontology 2024, 26, 25.

  • 59.

    Dong, Z.; Wang, Y.; Hao, C.; et al. Sanghuangporus sanghuang extract extended the lifespan and healthspan of Caenorhabditis elegans via DAF-16/SIR-2.1. Front. Pharmacol. 2023, 14, 1136897.

  • 60.

    Song, B.; Xia, W.; Li, T.; et al. Mitochondria are involved in the combination of blueberry and apple peel extracts synergistically ameliorating the lifespan and oxidative stress in Caenorhabditis elegans. Food Funct. 2022, 13, 8204–8213.

  • 61.

    Long, N.P.; Kim, H.M. Distinct metabolic alterations in different Caenorhabditis elegans mitochondrial mutants. J. Chromatogr. B 2021, 1179, 122863.

  • 62.

    Newell Stamper, B.L.; Cypser, J.R.; Kechris, K.; et al. Movement decline across lifespan of Caenorhabditis elegans mutants in the insulin/insulin-like signaling pathway. Aging Cell 2018, 17, e12704.

  • 63.

    Liu, Y.; Zhang, W.; Wang, Y.; et al. Oxidative stress, intestinal damage, and cell apoptosis: Toxicity induced by fluopyram in Caenorhabditis elegans. Chemosphere 2022, 286, 131830.

  • 64.

    Mangu, J.C.K.; Rai, N.; Mandal, A.; et al. Lysinibacillus sphaericus mediates stress responses and attenuates arsenic toxicity in Caenorhabditis elegans. Sci. Total Environ. 2022, 835, 155377.

  • 65.

    Leung, C.; Fong, Y.H.; Chiang, M.C.S.; et al. Protocol-driven best practices and cardiogenic shock survival in Asian patients. J. Am. Heart Assoc. 2025, 14, e037742.

  • 66.

    Tenchov, R.; Sasso, J.M.; Wang, X.; et al. Antiaging strategies and remedies: A landscape of research progress and promise. ACS Chem. Neurosci. 2024, 15, 408–446.

  • 67.

    Ochner, H.; Szilagyi, S.; Abb, S.; et al. Low-energy electron holography imaging of conformational variability of single-antibody molecules from electrospray ion beam deposition. Proc. Natl. Acad. Sci. USA 2021, 118, e2112651118.

  • 68.

    Pinches, I.J.L.; Pinches, Y.L.; Johnson, J.O.; et al. Could “cellular exercise” be the missing ingredient in a healthy life? Diets, caloric restriction, and exercise-induced hormesis. Nutrition 2022, 99–100, 111629.

  • 69.

    Calabrese, E.J.; Pressman, P.; Hayes, A.W.; et al. Hormesis, biological plasticity, and implications for clinical trial research. Ageing Res. Rev. 2023, 90, 102028.

  • 70.

    Cutuli, D.; Decandia, D.; Giacovazzo, G.; et al. Physical exercise as disease-modifying alternative against Alzheimer’s disease: A gut-muscle-brain partnership. Int. J. Mol. Sci. 2023, 24, 14686.

  • 71.

    Calabrese, E.J.; Mattson, M.P. How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech. Dis. 2017, 3, 13.

  • 72.

    Calabrese, V.; Santoro, A.; Trovato Salinaro, A.; et al. Hormetic approaches to the treatment of Parkinson’s disease: Perspectives and possibilities. J. Neurosci. Res. 2018, 96, 1641–1662.

  • 73.

    Spandole-Dinu, S.; Catrina, A.M.; Voinea, O.C.; et al. Pilot study of the long-term effects of radiofrequency electromagnetic radiation exposure on the mouse brain. Int. J. Environ. Res. Public Health 2023, 20, 3025.

  • 74.

    Scuto, M.; Rampulla, F.; Reali, G.M.; et al. Hormetic nutrition and redox regulation in gut-brain axis disorders. Antioxidants 2024, 13, 484.

  • 75.

    Modafferi, S.; Lupo, G.; Tomasello, M.; et al. Antioxidants, hormetic nutrition, and autism. Curr. Neuropharmacol. 2024, 22, 1156–1168.

  • 76.

    Xin, B.; Yang, M.; Wu, P.; et al. Enhancing the therapeutic efficacy of programmed death ligand 1 antibody for metastasized liver cancer by overcoming hepatic immunotolerance in mice. Hepatology 2022, 76, 630–645.

  • 77.

    Tenchov, R.; Sasso, J.M.; Wang, X.; et al. Aging hallmarks and progression and age-related diseases: A landscape view of research advancement. ACS Chem. Neurosci. 2024, 15, 1–30.

  • 78.

    Kurowska, A.; Ziemichód, W.; Herbet, M.; et al. The role of diet as a modulator of the inflammatory process in the neurological diseases. Nutrients 2023, 15, 1436.

  • 79.

    Badaeva, A.V.; Danilov, A.B.; Clayton, P.; et al. Perspectives on neuronutrition in prevention and treatment of neurological disorders. Nutrients 2023, 15, 2505.

  • 80.

    Novikov, V.N.; Badaeva, A.V.; Danilov, A.B.; et al. Precision neuronutrition: Personalized approaches for optimizing brain health. Biol. Life Sci. Forum 2023, 29, 20.

  • 81.

    Merino Del Portillo, M.; Clemente-Suárez, V.J.; Ruisoto, P.; et al. Nutritional modulation of the gut-brain axis: A comprehensive review of dietary interventions in depression and anxiety management. Metabolites 2024, 14, 549.

  • 82.

    Duda-Chodak, A.; Tarko, T.; Satora, P.; et al. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr. 2015, 54, 325–341.

  • 83.

    Kawabata, K.; Yoshioka, Y.; Terao, J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 2019, 24, 370.

  • 84.

    Bisaglia, M. Mediterranean diet and Parkinson’s disease. Int. J. Mol. Sci. 2022, 24, 42.

  • 85.

    Shandilya, S.; Kumar, S.; Kumar Jha, N.; et al. Interplay of gut microbiota and oxidative stress: Perspective on neurodegeneration and neuroprotection. J. Adv. Res. 2021, 38, 223–244.

  • 86.

    Govindan, S.; Amirthalingam, M.; Duraisamy, K.; et al. Phytochemicals-induced hormesis protects Caenorhabditis elegans against α-synuclein protein aggregation and stress through modulating HSF-1 and SKN-1/Nrf2 signaling pathways. Biomed. Pharmacother. 2018, 102, 812–822.

  • 87.

    Cathomas, F.; Murrough, J.W.; Nestler, E.J.; et al. Neurobiology of resilience: Interface between mind and body. Biol. Psychiatry 2019, 86, 410–420.

  • 88.

    Johnson, L.M.; Smith, O.J.; Hahn, D.A.; et al. Short-term heritable variation overwhelms 200 generations of mutational variance for metabolic traits in Caenorhabditis elegans. Evolution 2020, 74, 2451–2464.

  • 89.

    Calabrese, E.J. Hormesis: Path and progression to significance. Int. J. Mol. Sci. 2018, 19, 2871.

  • 90.

    Vassal, M.; Martins, F.; Monteiro, B.; et al. Emerging pro-neurogenic therapeutic strategies for neurodegenerative diseases: A review of pre-clinical and clinical research. Mol. Neurobiol. 2025, 62, 46–76.

  • 91.

    Lakshmi, P.K.; Kumar, S.; Pawar, S.; et al. Targeting metabolic syndrome with phytochemicals: Focus on the role of molecular chaperones and hormesis in drug discovery. Pharmacol. Res. 2020, 159, 104925.

  • 92.

    Ungvari, Z.; Menyhart, O.; Lehoczki, A.; et al. NRF2 pathway activation predicts poor prognosis in lung cancer: A cautionary note on antioxidant interventions. Geroscience 2025, 1–12. https://doi.org/10.1007/s11357-025-01736-0

  • 93.

    Vrânceanu, M.; Galimberti, D.; Banc, R.; et al. The anticancer potential of plant-derived nutraceuticals via the modulation of gene expression. Plants 2022, 11, 2524. 

  • 94.

    Flanagan E, Lamport D, Brennan L, et al., Nutrition and the ageing brain: Moving towards clinical applications. Ageing Res Rev. 2020, 62, 101079. 

Share this article:
How to Cite
Badaeva, A.; Danilov, A.; Kosareva, A.; Girlando, C.; Trapanotto, A.; Sidenkova, A.; Galimberti, D.; Rashan, L.; Wenzel, U.; Calabrese, E. J.; Calabrese, V. Brain Aging, Neurohormesis and Neuronutrition: Defining Neuroprotective Strategies. Ageing and Longevity Research 2025, 1 (1), 7. https://doi.org/10.53941/alr.2025.100007.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.