2504000433
  • Open Access
  • Article
Bandit-Based Multi-Agent Source Seeking with Safety Guarantees
  • Zhibin Ji †,   
  • Dingqi Zhu †,   
  • Bin Du *

Received: 02 Nov 2024 | Revised: 24 Dec 2024 | Accepted: 26 Dec 2024 | Published: 27 Dec 2024

Abstract

In this paper, we focus on a multi-agent source seeking problem where the safety of agents is characterized by a set of linear constraints. In particular, the safety constraints are also dependent on the unknown environment states, which makes the source seeking problem challenging to solve. To overcome such a challenge, we introduce a new notion of measurable path and then specify the reachability condition for all agents. A time-sequence of exploration is further introduced to help the agents to escape the stuck positions. To provide a performance guarantee for our source seeking algorithm, we perform the regret analysis and show a sub-linear cumulative regret. Finally, we evaluate the effectiveness of our SafeSearch algorithm through a set of simulations.

References 

  • 1.
    Fabbiano, R.; Garin, F.; Canudas-de Wit, C. Distributed source seeking without global position information. IEEE Trans.Control. Netw. Syst. 2016, 5, 228–238.
  • 2.
    Cochran, J.; Krstic, M. Nonholonomic source seeking with tuning of angular velocity. IEEE Trans. Autom. Control 2009,54, 717–731.
  • 3.
    Cochran, J.; Kanso, E.; Kelly, S.D.; et al. Source seeking for two nonholonomic models of fsh locomotion. IEEE Trans.Robot. 2009, 25, 1166–1176.
  • 4.
    Rolf, E.; Fridovich-Keil, D.; Simchowitz, M.; et al. A successive-elimination approach to adaptive robotic source seeking.IEEE Trans. Robot. 2020, 37, 34–47.
  • 5.
    Luo, W.; Tay, W.P.; Leng, M. Infection spreading and source identifcation: A hide and seek game. IEEE Trans. SignalProcess. 2016, 64, 4228–4243.
  • 6.
    Poveda, J.I.; Benosman, M.; Vamvoudakis, K.G. Data-enabled extremum seeking: a cooperative concurrent learning-basedapproach. Int. J. Adapt. Control. Signal Process. 2021, 35, 1256–1284.
  • 7.
    Ghaffarkhah, A.; Mostof, Y. Path planning for networked robotic surveillance. IEEE Trans. Signal Process. 2012,60, 3560–3575.
  • 8.
    Qian, K.; Claudel, C. Real-time mobile sensor management framework for city-scale environmental monitoring. J. Comput.Sci. 2020, 45, 101205.
  • 9.
    Sugiyama, H.; Tsujioka, T.; Murata, M. Real-time exploration of a multi-robot rescue system in disaster areas. Adv. Robot.2013, 27, 1313–1323.
  • 10.
    Li, S.; Kong, R.; Guo, Y. Cooperative distributed source seeking by multiple robots: Algorithms and experiments.IEEE/ASME Trans. Mechatron. 2014, 19, 1810–1820.
  • 11.
    Fabbiano, R.; De Wit, C.C.; Garin, F. Source localization by gradient estimation based on Poisson integral. Automatica2014, 50, 1715–1724.
  • 12.
    Brino´n-Arranz, L.; Schenato, L.; Seuret, A. Distributed source seeking via a circular formation of agents under communi-cation constraints. IEEE Trans. Control. Netw. Syst. 2015, 3, 104–115.
  • 13.
    Li, S.; Guo, Y. Distributed source seeking by cooperative robots: All-to-all and limited communications. In Proceedingsof the 2012 IEEE international Conference on Robotics and Automation, St Paul, Minnesota, USA, 14–18 May 2012;pp. 1107–1112.
  • 14.
    Poveda, J.I.; Benosman, M.; Teel, A.R.; et al. Robust coordinated hybrid source seeking with obstacle avoidance inmultivehicle autonomous systems. IEEE Trans. Autom. Control 2021, 67, 706–721.
  • 15.
    Jin, Z.; Li, H.; Ahn, C.K. Multiagent Distributed Source Seeking Under Globally Coupled Constraints: Algorithms andExperiments. IEEE Internet Things J. 2024, 11, 38936–38949.
  • 16.
    Ramirez-Llanos, E.; Martinez, S. Stochastic source seeking for mobile robots in obstacle environments via the SPSAmethod. IEEE Trans. Autom. Control 2018, 64, 1732–1739.
  • 17.
    Atanasov, N.; Le Ny, J.; Michael, N.; et al. Stochastic source seeking in complex environments. In Proceedings of the 2012IEEE International Conference on Robotics and Automation, Saint Paul, MI, USA, 14–18 May 2012; pp. 3013–3018.
  • 18.
    Amani, S.; Alizadeh, M.; Thrampoulidis, C. Linear stochastic bandits under safety constraints. Adv. Neural Inf. Process.Syst. 2019, 32, 1.
  • 19.
    Du, B.; Qian, K.; Iqbal, H.; et al. Multi-robot dynamical source seeking in unknown environments. In Proceedingsof the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021;pp. 9036–9042.
  • 20.
    Du, B.; Qian, K.; Claudel, C.; et al. Multiagent online source seeking using bandit algorithm. IEEE Trans. Autom. Control2022, 68, 3147–3154.
  • 21.
    Huang, C.; Du, B.; Chen, M. Multi-UAV Cooperative Online Searching Based on Voronoi Diagrams. IEEE Trans. Aerosp.Electron. Syst. 2024, 60, 3038–3049.
  • 22.
    Kia, S.S.; Van Scoy, B.; Cortes, J.; et al. Tutorial on dynamic average consensus: The problem, its applications, and thealgorithms. IEEE Control Syst. Mag. 2019, 39, 40–72.
  • 23.
    Du, B.; Mao, R.; Kong, N.; et al. Distributed data fusion for on-scene signal sensing with a multi-UAV system. IEEETrans. Control. Netw. Syst. 2020, 7, 1330–1341.
  • 24.
    Mou, S.; Morse, A.S. Finite-time distributed averaging. In Proceedings of the 2014 American Control Conference,Portland, OR, USA, 4–6 June 2014; pp. 5260–5263.
  • 25.
    Charalambous, T.; Yuan, Y.; Yang, T.; et al. Distributed fnite-time average consensus in digraphs in the presence of timedelays. IEEE Trans. Control. Netw. Syst. 2015, 2, 370–381.
  • 26.
    Du, B.; Qian, K.; Claudel, C.; et al. Jacobi-style iteration for distributed submodular maximization. IEEE Trans. Autom.Control 2022, 67, 4687–4702.
Share this article:
How to Cite
Ji, Z.; Zhu, D.; Du, B. Bandit-Based Multi-Agent Source Seeking with Safety Guarantees. Applied Mathematics and Statistics 2024, 1 (1), 5. https://doi.org/10.53941/ams.2024.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2024 by the authors.