- 1.
Kim, K.-D.; Kumar, P.R. Cyber–physical systems: A perspective at the centennial. Proc. IEEE 2012, 100, 1287–1308.
- 2.
Gonz´alez-Briones, A.; De La Prieta, F.; Mohamad, M.S.; Omatu, S.; Corchado, J.M. Multi-agent systems applications in energy optimization problems: A state-of-the-art review. Energies 2018, 11, 1928.
- 3.
Sharma, M.K.; Zappone, A.; Assaad, M.; Debbah, M.; Vassilaras, S. Distributed power control for large energy harvesting networks: A multi-agent deep reinforcement learning approach. IEEE Trans. Cogn. Commun. Netw. 2019, 5, 1140–1154.
- 4.
Iqbal, S.; Altaf, W.; Aslam, M.; Mahmood, W.; Khan, M.U.G. Application of intelligent agents in health-care. Artif. Intell. Rev. 2016, 46, 83–112.
- 5.
Radhakrishnan, B.M.; Srinivasan, D. A multi-agent based distributed energy management scheme for smart grid applications. Energy 2016, 103, 192–204.
- 6.
Karydis, K.; Kannappan, P.; Tanner, H.G.; Jardine, A.; Heinz, J. Resilience through learning in multi-agent cyber-physical systems. Front. Robot. AI 2016, 3, 36.
- 7.
Khaitan, S.K.; McCalley, J.D. Design techniques and applications of cyberphysical systems: A survey. IEEE Syst. J. 2014, 9, 350–365.
- 8.
Mahela, O.P.; Khosravy, M.; Gupta, N.; Khan, B.; Alhelou, H.H.; Mahla, R.; Patel, N.; Siano, P. Comprehensive overview of multi-agent systems for controlling smart grids. CSEE J. Power Energy Syst. 2020, 8, 115–131.
- 9.
Jiao, W.; Sun, Y. Self-adaptation of multi-agent systems in dynamic environments based on experience exchanges. J. Syst. Softw. 2016, 122, 165–179.
- 10.
Binyamin, S.S.; Ben Slama, S. Multi-agent Systems for Resource Allocation and Scheduling in a smart grid. Sensors 2022, 22, 8099.
- 11.
Chen, C.; Lewis, F.L.; Xie, S.; Modares, H.; Liu, Z.; Zuo, S.; Davoudi, A. Resilient adaptive and H∞ controls of multi-agent systems under sensor and actuator faults. Automatica 2019, 102, 19–26.
- 12.
Long, M.; Su, H.; Zeng, Z. Distributed observer-based leader–follower consensus of multiple Euler–Lagrange systems. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 157–168.
- 13.
Gong, X.; Li, X.; Shu, Z.; Feng, Z. Resilient output formation-tracking of heterogeneous multiagent systems against general Byzantine attacks: A twin-layer approach. IEEE Trans. Cybern. 2023, 54, 2566–2578.
- 14.
Baxevani, K.; Zehfroosh, A.; Tanner, H.G. Resilient Supervisory Multiagent Systems. IEEE Trans. Robot. 2021, 38, 229–243.
- 15.
Mahfouz, M.; Hafez, A.T.; Ashry, M.M.; Elnashar, G. Cyclic leader-following Strategy For Cooperative Unmanned Aerial Vehicles. In Proceedings of the IEEE International Conference on Vehicular Electronics and Safety, Cairo, Egypt, 4-6 September 2019; IEEE: New York, NY, USA, 2019; pp. 1–6.
- 16.
Wei, Z.; Zhang, X.; Zhang, Y.; Sun, M. Weighted automata extraction and explanation of recurrent neural networks for natural language tasks. J. Log. Algebr. Methods Program. 2024, 136, 100907.
- 17.
Bates, M. Models of natural language understanding. Proc. Natl. Acad. Sci. USA 1995, 92, 9977–9982.
- 18.
Collins, M.; Head-driven statistical models for natural language parsing. Comput. Linguist. 2003, 29, 589–637.
- 19.
Maletti, A. Survey: Finite-state technology in natural language processing. Theor. Comput. Sci. 2017, 679, 2–17.
- 20.
Jaf, S.; Calder, C. Deep learning for natural language parsing. IEEE Access 2019, 7, 131363–131373.
- 21.
Carrasco, R.C.; Oncina, J. Learning stochastic regular grammars by means of a state merging method. In Proceedings of the International Colloquium on Grammatical Inference, Alicante, Spain, 21–23 September 1994; Springer: Berlin/Heidelberg, Germany, 1994; pp. 139–152.