- 1.
Zhao, H.; Wang, L. Hopf bifurcation in Cohen–Grossberg neural network with distributed delays. Nonlinear Anal. Real World Appl. 2007, 8, 73–89.
- 2.
Song, Y.; Yuan, S. Bifurcation analysis in a predator–prey system with time delay. Nonlinear Anal. Real World Appl. 2006, 7, 265–284.
- 3.
Xu, W.; Cao, J.; Xiao, M.; Ho, D.W.; Wen, G. A new framework for analysis on stability and bifurcation in a class of neural networks with discrete and distributed delays. IEEE Trans. Cybern. 2014, 45, 2224–2236.
- 4.
Li, L.; Wang, Z.; Li, Y.; Shen, H.; Lu, J. Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays. Appl. Math. Comput. 2018, 330, 152–169.
- 5.
Cao, Y. Bifurcations in an Internet congestion control system with distributed delay. Appl. Math. Comput. 2019, 347, 54–63.
- 6.
Shukla, A.; Patel, R. Controllability results for fractional semilinear delay control systems. J. Appl. Math. Comput. 2021, 65, 861–875.
- 7.
Sardar, M.; Biswas, S.; Khajanchi, S. The impact of distributed time delay in a tumor-immune interaction system. Chaos, Solitons Fractals 2021, 142, 110483.
- 8.
Beretta, E.; Hara, T.; Ma, W.; Takeuchi, Y. Global asymptotic stability of an SIR epidemic model with distributed time delay. Nonlinear Anal. Theory Methods Appl. 2001, 47, 4107–4115.
- 9.
Ibrahim, L.M. Anomaly network intrusion detection system based on distributed time-delay neural network (DTDNN). J. Eng. Sci. Technol. 2010, 5, 457–471.
- 10.
Zhang, H.; Cheng, Y.; Zhang, W.; Zhang, H. Time-dependent and Caputo derivative order-dependent quasi-uniform synchronization on fuzzy neural networks with proportional and distributed delays. Math. Comput. Simul. 2023, 203, 846–857.
- 11.
Bray, W.C. A periodic reaction in homogeneous solution and its relation to catalysis. Math. Comput. Simul. 1921, 43, 1262–1267.
- 12.
Zhabotinsky, A.M. Periodic oxidizing reactions in the liquid phase. In Doklady Akademii Nauk; Russian Academy of Sciences: Moscow, Russia. 1964, 157, 392–395.
- 13.
Sriram, K.; Bernard, S. Complex dynamics in the Oregonator model with linear delayed feedback. Chaos 2008, 18, 023126.
- 14.
Wu, X.; Zhang, C. Dynamic properties of the Oregonator model with delay. J. Appl. Anal. Comput. 2012, 2, 91–102.
- 15.
Liu, Z.; Yuan, R. Zero-Hopf bifurcation for an infection-age structured epidemic model with a nonlinear incidence rate. Sci. China Math. 2017, 60, 1371–1398.
- 16.
Cai, Y.; Liu, L.; Zhang, C. Hopf-zero bifurcation of Oregonator oscillator with delay. Adv. Differ. Equ. 2018, 2018, 438.
- 17.
Xu, C.; Aouiti, C.; Liu, Z.; Li, P.; Yao, L. Bifurcation caused by delay in a fractional-order coupled oregonator model in chemistry. Match Commun. Math. Comput. Chem. 2022, 88, 371–396.
- 18.
Song, Y.; Jiang, J. Steady-state, Hopf and steady-state-Hopf bifurcations in delay differential equations with applications to a damped harmonic oscillator with delay feedback. Int. J. Bifurcation Chaos 2012, 22, 1250286.
- 19.
Su, R.; Zhang, C. Hopf-zero bifurcation of the ring unidirectionally coupled Toda oscillators with delay. Nonlinear Anal. Model. Control 2021, 26, 375–395.
- 20.
Xu, C.; Zhang, W.; Aouiti, C.; Liu, Z.X.; Li, P.L.; Yao, L. Bifurcation dynamics in a fractional-order Oregonator model including time delay. MATCH Commun. Math. Comput. Chem. 2022, 87, 397–414.
- 21.
Gao, S.; Teng, Z.; Nieto, J.J.; Torres, A. Analysis of an SIR epidemic model with pulse vaccination and distributed time delay. Biomed Res. Int. 2007, 1, 064870.
- 22.
Adimy, M.; Crauste, F.; Ruan, S. Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics. Nonlinear Anal. Real World Appl. 2005, 6, 651–670.
- 23.
Zhao, H.; Lin, Y.; Dai, Y. Hopf bifurcation and hidden attractors of a delay-coupled Duffing oscillator. Int. J. Bifurcation Chaos 2015, 25, 1550162.
- 24.
Xu, S.; Bao, J. Distributed control of plant-wide chemical processes with uncertain time-delays. Chem. Eng. Sci. 2012, 84, 512–532.
- 25.
Dvorak, A.; Kuzma, P.; Perlikowski, P.; Astakhov, V.; Kapitaniak, T. Dynamics of three Toda oscillators with nonlinear unidirectional coupling. Eur. Phys. J. Spec. Top. 2013, 222, 2429–2439.
- 26.
Lipta´k, G.; Pituk, M.; Hangos, K.M. Modelling and stability analysis of complex balanced kinetic systems with distributed time delays. J. Process Control 2019, 84, 13–23.
- 27.
Komatsu, H.; Nakajima, H. Stability analysis for single linkage class chemical reaction networks with distributed time delays. IFAC-PapersOnLine 2023, 56, 10466–10471.
- 28.
Rihan, F.A.; Alsakaji, H.J.; Rajivganthi, C. Stochastic SIRC epidemic model with time-delay for COVID-19. Adv. Differ. Equ. 2020, 2020, 502.
- 29.
Polifke, W. Modeling and analysis of premixed flame dynamics by means of distributed time delays. Prog. Energy Combust. Sci. 2020, 79, 100845.
- 30.
MacDonald, N. Time Lags in Biological Models; Springer Science & Business Media: Berlin, Germany, 2013.
- 31.
Cushing, J.M. Integrodifferential Equations and Delay Models in Population Dynamics; Springer Science & Business Media: Berlin, Germany, 2013.