- 1.
Lorenz, E.N. Deterministic nonperiodic flows. J. Atmos. Sci. 1963, 20, 130–141.
- 2.
May, R. Simple mathematical models with very complicated dynamics. Nature 1976, 261, 459–475.
- 3.
Feigenbaum, M.J. Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 1978, 19, 25–52.
- 4.
Devaney, R.L. An Introduction to Chaotic Dynamical Systems, 2nd ed.; Addison-Wesley: Boston, MA, USA, 1948.
- 5.
Devaney, R.L. A First Course in Chaotic Dynamical Systems: Theory and Experiment; Addison-Wesley: Boston, MA, USA, 1992.
- 6.
Alligood, K.T.; Sauer, T.D.; Yorke, J.A. Chaos: An Introduction to Dynamical Systems; Springer Verlag, New York Inc.: New York, NY, USA, 1996.
- 7.
Ausloos, M.; Dirickx, M. The Logistic Map and the Route to Chaos: from the Beginnings to Modern Applications; Springer Verlag, New York Inc.: New York, NY, USA, 2006.
- 8.
Andrecut, M. Logistic map as a random number generator. Int. J. Mod. Phys. B 1998, 12, 101–102.
- 9.
Holmgren, R.A. A First Course in Discrete Dynamical Systems; Springer Verlag, New York Inc.: New York, NY, USA, 1994.
- 10.
Block, L.S.; Coppel, W.A. Dynamics in One Dimension; Springer Verlag, New York Inc.: New York, NY, USA, 1992.
- 11.
Diamond, P. Chaotic behavior of system of difference equations. Int. J. Syst. Sci. 1976, 7, 953–956.
- 12.
Alpar, O. Analysis of a new simple one-dimensional chaotic map. Nonlinear Dyn. 2014, 78, 771–778.
- 13.
Harikrishanan, K.P.; Nandakumaran, V.M. Bifurcation structure and Lyapunov exponents of a modulated logistic map. J. Phys. 1987, 29, 533–542.
- 14.
Radwan, A.G. On some discrete generalized logistic maps. J. Adv. Res. 2013, 4, 163–171.
- 15.
Chowdhary, A.R. Periodicity and chaos in modulated logistic map. Int. J. Theor. Phys. 1990, 29, 779–788.
- 16.
Sayed, W.S.; Radwan, A.G.; Fahmy, H.A. Design of positive, negative and alternating sign generalized logistic maps. Discrete Dyn. Nat. Soc. 2015, 2015, 586783.
- 17.
Elhadj, Z.; Sprott, J.C. The effect of modulating a parameter in the logistic map. Chaos 2008, 18, 1–7.
- 18.
Elhadj, Z.; Sprott, J.C. On the dynamics of a new simple 2-D rational discrete mapping. Int. J. Bifurc. Chaos 2011, 21, 155–160.
- 19.
De Oliveira, L.P.; Sobottka, M. Cryptography with chaotic mixing, Chaos Solit. Fract. 2008, 3, 466–471.
- 20.
Singh, N.; Meng, J. Chaos-based secure communication using logistic map. Opt. Lasers Eng. 2010, 48, 398–404.
- 21.
Medina, R.V.; Mendez, A.D.; Rio-Correa, J.L.; et al. Design of chaotic analog noise generators with logistic map and MOS QT circuits. Chaos Soliton Fract. 2009, 40, 1779–1793.
- 22.
Molina, C.; Sampson, N.; Fitzgerald, W.J.; et al. Geometrical techniques for finding the embedding dimension of time series. In Proceedings of the IEEE Signal Processing Society Workshop, Kyoto, Japan, 4–6 September 1996; pp. 161–169.
- 23.
Ashish; Cao, J.; Chugh, R. Chaotic behavior of logistic map in superior orbit and an improved chaos-based traffic control model. Nonlinear Dyn. 2018, 94, 959–975.
- 24.
Ashish; Cao, J. A novel fixed point feedback approach studying the dynamical behaviour of standard logistic map. Int. J. Bifurc. Chaos 2019, 29, 1950010.
- 25.
Cao, J.; Ashish. Scaling analysis at transition of chaos driven by Euler’s numerical algorithm. Int. J. Bifurc. Chaos 2023, 33, 2350092.
- 26.
Ashish; Sajid, M. Stabilization in chaotic maps using hybrid chaos control procedure. Heliyon 2024, 10, e23984.
- 27.
Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–230.
- 28.
Noor, M.A. Three-step iterative algorithms for multivalued quasi variational inclusions. J. Math. Anal. Appl. 2001, 255, 589–604.
- 29.
Noor, M.A.; Noor, K.I.; Treanta, S.; et al. On three-step iterative schemes associated with general quasi-variational inclusions. Alexandria Eng. J. 2022, 12, 12051–12059.
- 30.
Noor, M.A.; Noor, K.I. Some novel aspects and applications of Noor iterations and Noor orbits. J. Adv. Math. Stud. 2024, 3, 276–284.