- 1.
Hafeez, I.; Kamal, M.A.; Mirza, M.W.; et al. Laboratory fatigue performance evaluation of different field laid asphalt mixtures. Constr. Build. Mater. 2013, 44, 792–797.
- 2.
Javilla, B.; Fang, H.; Mo, L.; et al. Test evaluation of rutting performance indicators of asphalt mixtures. Constr. Build. Mater. 2017, 155, 1215–1223.
- 3.
Coleri, E.; Harvey, J.T.; Yang, K.; et al. A micromechanical approach to investigate asphalt concrete rutting mechanisms. Constr. Build. Mater. 2012, 30, 36–49.
- 4.
Barksdale, R.D. Laboratory evaluation of rutting in basecourse materials. In Proceedings of the Third International Conference on the Structural Design of Asphalt Pavements, London, UK, 11–15 September 1972.
- 5.
Eisenmann, J.; Hilmer, A. Influence of wheel load and inflation pressure on the rutting effect at asphalt-pavements- experiments and theoretical investigations. Annu. Rev. Political Sci. 1987, 14, 149–175.
- 6.
Peng, M.J. Nonlinear Theory and Methods for Rutting Analysis of Asphalt Pavement; Tongji University: Shanghai, China, 2005.
- 7.
Du, Plessis, L.; Coetzee, N.F.; Hoover, T.P.; et al. Three decades of development and achievements: the heavy vehicle simulator in accelerated pavement testing. In Pavement Mechanics and Performance; ASCE: Reston, VA, USA, 2006.
- 8.
Metcalf, J.B. A history of full-scale Accelerated Pavement Testing facilities to 1962. Road Transp. Res. 2014, 23, 25–40.
- 9.
Banan, M.R.; Hjelmstad, K.D. Neural networks and AASHO road test. J. Transp. Eng. 1996, 122, 358–366.
- 10.
Tsai, B.W.; Coleri, E.; Harvey, J.T.; et al. Evaluation of AASHTO T324 Hamburg-Wheel track device test. Constr. Build. Mater. 2016, 114, 248–260.
- 11.
Martin, A.E.; Walubita, L.F.; Hugo, F.; et al. Pavement Response and Rutting for Full-Scale and Scaled APT. J. Transp. Eng. 2003, 129, 451–461.
- 12.
Kou, B.; Cao, J.; Huang, W.; et al. Rutting prediction model of asphalt pavement based on riohtrack full-scale ring road. Measurement 2025, 242, 115915.
- 13.
Contreras, J.; Espinola, R.; Nogales, F.J.; et al. Arima models to predict next-day electricity prices. IEEE Trans. Power Syst. 2003, 18, 1014–1020.
- 14.
Prez, I.; Gallego, J. Rutting prediction of a granular material for base layers of low-traffic roads. Constr. Build. Mater. 2010, 24, 340–345.
- 15.
Wang, X.D.; Zhang, L.; Zhou, X.Y.; et al. Research progress of RIOHTRACK in china. In Accelerated Pavement Testing to Transport Infrastructure Innovation; Springer: Berlin/Heidelberg, Germany, 2020.
- 16.
Priest, A.L.; Timm, D.H. A full-scale pavement structural study for mechanistic-empirical pavement design (with discussion). J. Assoc. Asph. Paving Technol. 2005, 74, 519–556.
- 17.
Kou, B.; Cao, J.; Huang, W.; et al. The rutting model of semi-rigid asphalt pavement based on RIOHTRACK full-scale track. Math. Biosci. Eng. 2023, 20, 8124–8145.
- 18.
Guo, Y.; Wang, X.; Wang, S.; Hu, K.; et al. Identification method of coal and coal gangue based on dielectric characteristics. IEEE Access 2021, 9, 9845–9854.
- 19.
Kou, B.; Cao, J.; Liu, D.; et al. Generalization ability of rutting prediction model for asphalt pavement based on RIOHTrack full-scale track. In Proceedings of the 2024 9th International Conference on Information and Education Innovations, Verbania, Italy, 12–14 April 2024.
- 20.
Khan, I.; Hou, F.; Le H.P. The impact of natural resources, energy consumption, and population growth on environmental quality: fresh evidence from the united states of America. Sci. Total. Environ. 2020, 754, 142222.
- 21.
Quintanilla, R.; Rajagopal, K.R. On burgers fluids. Math. Methods Appl. Sci. 2006, 29, 2133–2147.
- 22.
Zhuang, C.; Chen, K.; Ye, Y.; et al. Experimental and computational study on the anti-rutting behavior of an asphalt mixture based on an advanced mts test. SSRN Electron. J. 2023, 18, e02176.
- 23.
Liu, J.; Cheng, C.; Zheng, C.; et al. Rutting prediction using deep learning for time series modeling and k-means clustering based on RIOHTrack data. Constr. Build. Mater. 2023, 385, 131515.