- 1.
Zhang, H.; Liu, Z. Stability analysis for linear delayed systems via an optimally dividing delay interval approach. Automatica 2011, 47, 2126–2129.
- 2.
Wang, C.; Shen, Y. Improved delay-dependent robust stability criteria for uncertain time delay systems. Appl. Math. Comput. 2011, 218, 2880–2888.
- 3.
Liu, P. A delay decomposition approach to robust stability analysis of uncertain systems with time-varying delay. ISA Trans. 2012, 51, 694–701.
- 4.
Chen, D.; Liu, X.; Song, Y. Stability analysis of discrete-time system with slowly time-varying delays. Procedia Comput. Sci. 2022, 199, 1008–1015.
- 5.
Li, H.; Zhou, B.; Hou, M.; et al. On the time-varying Halanay inequality with applications to stability analysis of time-delay systems. J. Frankl. Inst. 2021, 358, 5488–5512.
- 6.
González, A. Improved results on stability analysis of time-varying delay systems via delay partitioning method and Finsler’s lemma. J. Frankl. Inst. 2022, 359, 7632–7649.
- 7.
Ding, L.; He, Y.; Wu, M.; et al. A novel delay partitioning method for stability analysis of interval time-varying delay systems. J. Frankl. Inst. 2017, 354, 1209–1219.
- 8.
Hui, J.; Kong, X.; Zhang, H.; et al. Delay-partitioning approach for systems with interval time-varying delay and nonlinear perturbations. J. Comput. Appl. Math. 2015, 281, 74–81.
- 9.
Mou, S.; Gao, H.; Chen, T. New delay-range-dependent stability condition for linear system. In Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China, 25–27 June 2008; pp. 25–27.
- 10.
Qian, W.; Liu, J. New stability analysis for systems with interval time-varying delay. J. Frankl. Inst. 2013, 350, 890–897.
- 11.
Shao, H. New delay-dependent stability criteria for systems with interval delay. Automatica 2009, 45, 744–749.
- 12.
Shao, H. Improved delay-dependent stability criteria for systems with a delay varying in a range. Automatica 2008, 44, 3215–3218.
- 13.
Hong, S.; Zhao, J. Exponential synchronization and L2-Gain analysis of delayed chaotic neural networks via intermittent control with actuator saturation. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3722–3734.
- 14.
Sun, J.; Liu, G.; Chen, J.; et al. Improved delay-range-dependent stability criteria for linear systems with time-varying delays. Automatica 2010, 46, 466–470.
- 15.
Seuret, A.; Gouaisbaut, F. Wirtinger-based integral inequality: Application to time-delay systems. Automatica 2013, 49, 2860–2866.
- 16.
Hong, S.; Li, F.; Zhu, S.; et al. Dissipativity analysis and bumpless transfer control for synchronization of switched delayed neural networks: A modified combined switching approach. IEEE Trans.Syst. Man Cybern. Syst. 2025, 55, 6913–6924.
- 17.
Lee, T.H.; Park, J.H. Improved stability conditions of time-varying delay systems based on new Lyapunov functionals. J. Frankl. Inst. 2018, 355, 1176–1191.
- 18.
Fridman, E. New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Syst. Control Lett. 2001, 43, 309–319.
- 19.
Wu, M.; He, Y.; She, J. New delay-dependent stability criteria and stabilizing method for neutral systems. IEEE Trans. Autom. Control 2004, 49, 2266–2271.
- 20.
Han, Q. Absolute stability of time-delay systems with sector-bounded nonlinearity. Automatica. 2005, 41, 2171–2176.
- 21.
Zhang, X.; Wu, M.; She, J.; et al. Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica 2005, 41, 1405–1412.
- 22.
Zhang, X.; Han, Q. Robust H∞ filtering for a class of uncertain linear systems with time-varying delay. Automatica 2008, 44, 157–166.
- 23.
Liu, K.; Fridman, E. Wirtinger’s inequality and Lyapunov-based sampled-data stabilization. Automatica 2012, 48, 102–108.
- 24.
Zeng, H.; He, Y.; Wu, M.; et al. New results on stability analysis for systems with discrete distributed delay. Automatica 2015, 60, 189–192.
- 25.
Lee, D.-H.; Kim, Y.-J.; Lee, S.-H.; et al. Enhancing stability criteria for linear systems with interval time-Varying delays via augmented Lyapunov-Krasovskii functional. Mathematics 2024, 12, 2227–7390.
- 26.
Zhai, Z.; Yan, H.; Chen, S.; et al. Hierarchical stability conditions for two types of time-varying delay generalized neural networks. IEEE Trans. Cybern. 2024, 54, 5832–5842.
- 27.
Liao, W.; Zeng, H.; Lin, H. Stability analysis of linear time-varying delay systems via a novel augmented variable approach. Mathematics 2024, 12, 1638.
- 28.
Park, P.; Ko, J.; Jeong, C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica 2011, 47, 235–238.
- 29.
Yang, B.; Yan, Z.; Pan, X.; et al. Improved stability criteria for linear systems with time-varying delays. J. Frankl. Inst. 2021, 358, 7804–7824.