2512002473
  • Open Access
  • Article

H Control of Markov Jump Reaction-Diffusion Neural Networks via a Dynamic Event-Triggered Mechansim with Actuator Faults

  • Yang Liu,   
  • Kui Ding *,   
  • Xiaotai Wu *,   
  • Ying Zhao

Received: 02 Nov 2025 | Revised: 28 Nov 2025 | Accepted: 09 Dec 2025 | Published: 15 Dec 2025

Abstract

This paper investigates the problem of H control of Markov jump reactiondiffusion neural networks (MJRDNNs) via a dynamic event-triggered mechanism with actuator faults. First, by introducing reaction-diffusion terms into neural networks with Markovian switching, a more applicable class is constructed. Considering the communication pressure of MJRDNNs, this paper adopts a dynamic event-triggered mechanism to make the model more practical. By introducing an internal dynamic variable, the event-triggered mechanism has a more flexible threshold. The potential actuator fault in each network node is also considered. Secondly, an integral feedback controller is presented to study the control problem and \(\mathcal{H}_\infty\) performance of MJRDNNs. By constructing an integral-form Lyapunov-Krasovskii (L-K) functional, some sufficient conditions can be obtained. Moreover, by using matrix techniques, the sufficient conditions are transformed into solvable linear matrix inequalities (LMIs), and the controller gain can also be derived. Finally, a numerical example is presented to demonstrate the effectiveness of the results.

References 

  • 1.

    Qi, W.; Zhang, N.; Park, J.H.; et al. Protocol-based synchronization of semi-Markovian jump neural networks with DoS
    attacks and application to quadruple-tank process. IEEE Trans. Autom. Sci. Eng. 2024, 22, 1377–1389.

  • 2.

    Yao, L.; Huang, X.; Wang, Z.; et al. A multi-sensor-based switching event-triggered mechanism for synchronization control
    of markovian jump neural networks under DoS attacks. IEEE Trans. Inf. Forensics Secur. 2024, 19, 7548–7559.

  • 3.

    Lin, W.J.; Wang, Q.; Tan, G. Asynchronous adaptive event-triggered fault detection for delayed Markov jump neural
    networks: A delay-variation-dependent approach. Neural Netw. 2024, 171, 53–60.

  • 4.

    Chang, X.K.; He, Y. Extended dissipativity analysis for delayed Markovian jump neural networks via a delay-intervaladjustable-
    based Lyapunov-Krasovskii functional. IEEE Trans. Cybern. 2025, 55, 3158–3170.

  • 5.

    Zhang, X.; Luo, B.; Wang, Z.P.; et al. Adaptive boundary control for synchronization of reaction-diffusion neural networks
    with random time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 14624–14635.

  • 6.

    Song, X.; Man, J.; Ahn, C.K.; et al. Synchronization in finite/fixed time for Markovian complex-valued nonlinear interconnected
    neural networks with reaction-diffusion terms. IEEE Trans. Netw. Sci. Eng. 2021, 8, 3313–3324.

  • 7.

    Wei, W.; Zhang, B.; Cheng, J.; et al. Time-space sampled-data control for semi-Markov reaction-diffusion neural networks:
    Adopting multiple event-triggered protocols. Inf. Sci. 2025, 698, 121779.

  • 8.

    Zhang, Y.; Wu, Z. Event-based asynchronous H∞ control for nonhomogeneous Markov jump systems with imperfect
    transition probabilities. IEEE Trans. Cybern. 2024, 54, 6269–6280.

  • 9.

    Yan, H.; Tian, Y.; Li, H.; et al. Input-output finite-time mean square stabilisation of nonlinear semi-Markovian jump systems.
    Automatica 2019, 104, 82–89.

  • 10.

    Ma, Y.; Kong, C. Dissipative asynchronous T-S fuzzy control for singular semi-Markovian jump systems. IEEE Trans.
    Cybern. 2022, 52, 5454–5463.

  • 11.

    Xu, Z.; Su, H.; Shi, P.; et al. Asynchronous H∞ control of semi-Markov jump linear systems. Appl. Math. Comput. 2019,
    349, 270–280.

  • 12.

    Shen, H.; Wang, X.; Wang, J.; et al. Robust composite H∞ synchronization of Markov jump reaction-diffusion neural
    networks via a disturbance observer-based method. IEEE Trans. Cybern. 2022, 52, 12712–12721.

  • 13.

    Qi,W.; Yuan, Z.; Zong, G.; et al. Dynamic-memory protocol-based synchronization for semi-Markov jump reaction-diffusion
    CDNs. IEEE Trans. Cybern. 2025, 55, 969–980.

  • 14.

    Han, X.; Wu, K.; Yuan, X. Observer-based asynchronous boundary stabilization for stochastic Markovian reaction-diffusion
    neural networks. IEEE Trans. Cybern. 2024, 54, 6667–6678.

  • 15.

    Li, H.; Shi, P.; Yao, D. Adaptive sliding-mode control of Markov jump nonlinear systems with actuator faults. IEEE Trans.
    Autom. Control 2017, 62, 1933–1939.

  • 16.

    Tao, J.; Lu, R.; Shi, P.; et al. Dissipativity-based reliable control for fuzzy Markov jump systems with actuator faults. IEEE
    Trans. Cybern. 2017, 47, 2377–2388.

  • 17.

    Pang, Y.; Zhuang, G.; Xia, J.; et al. H∞ security control for singular jump systems with actuator faults and DoS attacks
    under switching-like adaptive trigger and application to OCCP. IEEE Trans. Autom. Sci. Eng. 2025, 22, 7955–7966.

  • 18.

    Hu, M.; Cheng, J. Asynchronous output feedback control for fuzzy Markov jump systems with actuator faults and deception
    attacks. Nonlinear Dyn. 2024, 112, 20035–20045.

  • 19.

    Hu, M.; Park, J.; Cheng, J. Finite-time asynchronous control for semi-Markov jump systems with random uncertainties and
    actuator faults. Inf. Sci. 2024, 674, 120701.

  • 20.

    Yang, H.; Jiang, Y.; Yin, S. Adaptive fuzzy fault-tolerant control for Markov jump systems with additive and multiplicative
    actuator faults. IEEE Trans. Fuzzy Syst. 2021, 29, 772–785.

  • 21.

    Tabuada, P. Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 2007, 52, 1680–1685.

  • 22.

    Girard, A. Dynamic triggering mechanisms for event-triggered control. IEEE Trans. Autom. Control 2014, 60, 1992–1997.

  • 23.

    Gu, Z.; Yue, D.; Tian, E. On designing of an adaptive event-triggered communication scheme for nonlinear networked
    interconnected control systems. Inf. Sci. 2018, 422, 257–270.

  • 24.

    Zhang, Q.; Yan, H.; Zhang, H.; et al. H∞ control of singular system based on stochastic cyber-attacks and dynamic
    event-triggered mechanism. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 7510–7516.

  • 25.

    Chen, M.; Wang, Y.; Wang, X. Input-output finite-time guaranteed cost control for time-varying systems based on an
    aperiodic adaptive event-triggered mechanism. J. Syst. Sci. Complex. 2023, 36, 1070–1088.

  • 26.

    Peng, C.; Han, Q.; Yue, D. To transmit or not to transmit: A discrete event-triggered communication scheme for networked
    Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 2013, 21, 164–170.

  • 27.

    Luo, W.; Chen, H.; Zong, G.; et al. Event-triggered neural asynchronous control of nonhomogeneous Markov jump power
    systems with hybrid cyber attacks and unknown states. IEEE Trans. Power Syst. 2025, 40, 3874–3886.

Share this article:
How to Cite
Liu, Y.; Ding, K.; Wu, X.; Zhao, Y. H Control of Markov Jump Reaction-Diffusion Neural Networks via a Dynamic Event-Triggered Mechansim with Actuator Faults. Applied Mathematics and Statistics 2025, 2 (2), 7. https://doi.org/10.53941/ams.2025.100007.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.