2601002735
  • Open Access
  • Article

Using the ECOC Algorithm to Classify Diabetes with Fuzzy-Mapped Decoding Method

  • Ying Bai 1,*,   
  • Dali Wang 2

Received: 20 Nov 2025 | Revised: 24 Dec 2025 | Accepted: 25 Dec 2025 | Published: 20 Jan 2026

Abstract

The Error Correcting Output Codes (ECOC) algorithm has played more and more important role in the artificial intelligence (AI) study and research fields in recent years due to its special properties and error correcting abilities. Various methods have been reported to improve its performance and classification accuracy. In this study, we developed a simplified ECOC encoding method to reduce the complexity in the encoding process and reduce its randomness in initializing the coding matrix. Furthermore, we also suggested a fuzzy mapping decoding (FMD) method used for the ECOC decoding process to improve its classification accuracy. By using this FMD, the classification accuracy can be improved up to 84% compared with the decoding method without using the FMD, which is 77%.

References 

  • 1.

    Crammer, K.; Singer, Y. On the learnability and design of output codes for multiclass problems. Mach. Learn. 2002, 47, 201–233.

  • 2.

    Bagheri, M.A.; Montazer, G.A.; Kabir, E. A subspace approach to error correcting output codes. Pattern Recognit. Lett. 2013, 34, 176–184.

  • 3.

    Escalera, S.; Pujol, O.; Radeva, P. On the decoding process in ternary error correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 32, 120–134.

  • 4.

    Bai, X.; Niwas, S.I.; Lin, W.; et al. Learning ECOC Code Matrix for Multiclass Classification with Application to Glaucoma Diagnosis. J. Med. Syst. 2016, 40, 78.

  • 5.

    Allwein, E.; Schapire, R.; Singer, Y. Reducing multiclass to binary: A unifying approach for margin classifiers. J. Mach. Learn. Res. 2002, 1, 113–141.

  • 6.

    Dietterich, T.; Bakiri, G. Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell.Res. 1995, 2, 263–286.

  • 7.

    Frank, E.; Kramer, S. Ensembles of nested dichotomies for multiclass problems. In Proceedings of the 21st international Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; pp. 305–312.

  • 8.

    Hastie, T.; Tibshirani, R. Classification by pairwise grouping. Ann. Stat. 1998, 26, 451–471.

  • 9.

    Ghani, R. Using error-correcting codes for text classification. In Proceedings of the ICML ’00: Seventeenth International Conference on Machine Learning, Stanford, CA, USA, 29 June–2 July 2000; pp. 303–310.

  • 10.

    Available online: https://www.khoury.northeastern.edu/home/vip/teach/MLcourse/4_boosting/lecture_notes/ecoc/ecoc.pdf (accessed on 15 November 2025).

  • 11.

    Zhou, J.; Yang, Y.; Zhang, M.; et al. Constructing ECOC based on confusion matrix for multiclass learning problems. Sci. China Inf. Sci. 2016, 59, 1–14. https://doi.org/10.1007/s11432-015-5321-y.

  • 12.

    Sun, M.; Liu, K.; Wu, Q.; et al. A novel ECOC algorithm for multiclass microarray data classification based on data complexity analysis, Pattern Recognit. 2019, 90, 346–362. https://doi.org/10.1016/j.patcog.2019.01.047.

  • 13.

    Lei, L.; Song, Y.; Luo, X. A new re-encoding ECOC using reject option. Appl. Intell. 2020, 50, 3090–3100. https://doi.org/10.1007/s10489-020-01642-2.

  • 14.

    Feng, K.-J.; Liong, S.-T.; Liu, K.-H. The design of variable-length coding matrix for improving error correcting output codes, Inf. Sci. 2020, 534, 192–217. https://doi.org/10.1016/j.ins.2020.04.021.

  • 15.

    Zor, C.; Yanikoglu, B.; Windeatt, T.; et al. FLIP-ECOC: A Greedy Optimization of the ECOC Matrix. In Computer and Information Sciences; Lecture Notes in Electrical Engineering; Gelenbe, E., Lent, R., Sakellari, G., Sacan, A., Toroslu, H., Yazici, A. Eds.; Springer: Dordrecht, The Netherlands, 2011. https://doi.org/10.1007/978-90-481-9794-1_30.

  • 16.

    Radeva, P.; Pujol, O.; Escalera, S.; et al. ECOC-ONE: A Novel Coding and Decoding Strategy. In Proceedings of the 18th International Conference on Pattern Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; pp. 578–581. https://doi.org/10.1109/ICPR.2006.469.

  • 17.

    Wang, L.-N.; Wei, H.; Zheng, Y.; et al. Deep Error-Correcting Output Codes. Algorithms 2023, 16, 555. https://doi.org/10.3390/a16120555.

  • 18.

    Pujol, O.; Radeva, P.; Vitria, J. Discriminant ECOC: A Heuristic Method for Application Dependent Design of Error Correcting Output Codes. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1001–1007.

  • 19.

    Masulli, F.; Valentini, G. An experimental analysis of the dependence among codeword bit errors in ECOC learning machines. Neurocomputing 2004, 57, 189–214. https://doi.org/10.1016/j.neucom.2003.09.011.

  • 20.

    Ahmed, S.A.A.; Zor, C.; Awais, M.; et al. Deep Convolutional Neural Network Ensembles Using ECOC. IEEE Access 2021, 9, 86083–86095. https://doi.org/10.1109/ACCESS.2021.3088717.

  • 21.

    Sharma, E.; Shakeel, I.; Deo, R.C.; et al. A Comparative Study of Artificial Intelligence-Based Algorithms for Bitwise Decoding of Error Correction Codes. In Proceedings of the 22nd International Symposium on Communications and Information Technologies (ISCIT), Sydney, Australia, 16–18 October 2023; pp. 37–42. https://doi.org/10.1109/ISCIT57293.2023.10376079.

  • 22.

    Kim, J.-L.; Kim, M. Error-correcting output codes for multi-class classification based on Hadamard matrices and a CNN model. Procedia Comput. Sci. 2023, 222, 252–261. https://doi.org/10.1016/j.procs.2023.08.163.

  • 23.

    Available online: https://data.mendeley.com/datasets/wj9rwkp9c2/1 (accessed on 15 November 2025).

Share this article:
How to Cite
Bai, Y.; Wang, D. Using the ECOC Algorithm to Classify Diabetes with Fuzzy-Mapped Decoding Method. Applied Mathematics and Statistics 2026, 3 (1), 1. https://doi.org/10.53941/ams.2026.100001.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.