- 1.
Xu,; Nussinov, R.; Ma, B. Coupling of the non-amyloid-component (NAC) domain and the KTK(E/Q)GV repeats stabilize the α-synuclein fibrils. Eur. J. Med. Chem. 2016, 121, 841–850.
- 2.
Morris,R.; Spillantini, M.G.; Sue, C.M.; et al. The pathogenesis of Parkinson’s disease. Lancet 2024, 403, 293–304.
- 3.
Bartels, A traffic jam leads to Lewy bodies. Nat. Neurosci. 2019, 22, 1039–1045.
- 4.
Calabresi,; Di Lazzaro, G.; Marino, G.; et al. Advances in understanding the function of alpha-synuclein: Implications for Parkinson’s disease. Brain 2023, 146, 3587–3597.
- 5.
Lin,J.; Chen, S.D.; Lin, K.L.; et al. Iron brain menace: The involvement of ferroptosis in Parkinson disease. Cells 2022, 11, 3829.
- 6.
Gaeta,; Hider, R.C. The crucial role of metal ions in neurodegeneration: The basis for a promising therapeutic strategy. Br. J. Pharmacol. 2005, 146, 1041–1059.
- 7.
Brooks,; Everett, J.; Lermyte, F.; et al. Analysis of neuronal iron deposits in Parkinson’s disease brain tissue by synchrotron x-ray spectromicroscopy. J. Trace Elem. Med. Biol. 2020, 62, 126555.
- 8.
Goedert, Alpha-synuclein and neurodegenerative diseases. Nat. Rev. Neurosci. 2001, 2, 492–501.
- 9.
Yavich,; Tanila, H.; Vepsäläinen, S.; et al. Role of alpha-synuclein in presynaptic dopamine recruitment. J. Neurosci. 2004, 24, 11165–11170.
- 10.
Plotegher,; Greggio, E.; Bisaglia, M.; et al. Biophysical ground work as a hinge to unravel the biology of α-synuclein aggregation and toxicity. Q. Rev. Biophys. 2014, 47, 1–48.
- 11.
Monzani,; Nicolis, S.; Dell’Acqua, S.; et al. Dopamine, oxidative stress and protein-quinone modifications in Parkinson’s and other neurodegenerative diseases. Angew. Chem. Int. Ed., 2019, 58, 6512–6527.
- 12.
Lehrer,; Rheinstein, P.H. αSynuclein enfolds tyrosine hydroxylase and dopamine ßhydroxylase, potentially reducing dopamine and norepinephrine synthesis. J. Proteins Proteom. 2022, 13, 109–115.
- 13.
Nagatsu,; Levitt, M.; Udenfriend, S.; Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis. J. Biol. Che. 1964, 239, 2910–2917.
- 14.
Nagatsu,; Nakashima, A.; Watanabe, H.; et al. The role of tyrosine hydroxylase as a key player in neuromelanin synthesis and the association of neuromelanin with Parkinson’s disease. J. Neural Transm. 2023, 130, 611–625.
- 15.
Beard,; Erikson, K.M.; Jones, B.C. Neonatal iron deficiency results in irreversible changes in dopamine function in rats. J. Nutr. 2003, 133, 1174–1179.
- 16.
Flydal,I.; Martinez, A. Phenylalanine hydroxylase: Function, structure, and regulation. IUBMB Life 2013, 65, 341–349.
- 17.
Wu,P.; Kim, S.; Fela, D.A.; et al. Characterization of conformational and dynamic properties of natively unfolded human and mouse alpha-synuclein ensembles by NMR: Implication for aggregation. J. Mol. Biol. 2008, 378, 1104–1115.
- 18.
Binolfi,; Rasia, R.M.; Bertoncini, C.W.; et al. Interaction of alpha-synuclein with divalent metal ions reveals key differences: A link between structure, binding specificity and fibrillation enhancement. J. Am. Chem. Soc. 2006, 128, 9893–9901.
- 19.
Lorentzon,; Kumar, R.; Horvath, I.; et al. Differential effects of Cu2+ and Fe3+ ions on in vitro amyloid formation of biologically-relevant a-synuclein variants. Biometals 2020, 33, 97–106.
- 20.
McDowall,S.; Brown, D.R. Alpha-synuclein: Relating metals to structure, function and inhibition. Metallomics 2016, 8, 385–397.
- 21.
Sian-Hulsmann,; Riederer, P. The role of alpha-synuclein as ferrireductase in neurodegeneration associated with Parkinson’s disease. J. Neural Transm. 2020, 127, 749–754.
- 22.
Zucca,A.; Vanna, R.; Cupaioli, F.A.; et al. Neuromelanin organelles are specialized autolysosomes that accumulate undegraded proteins and lipids in aging human brain and are likely involved in Parkinson’s disease. NPJ Park. Dis. 2018, 4, 17.
- 23.
Zecca,; Bellei, C.; Costi, P.; et al. New melanic pigments in the human brain that accumulate in aging and block environmental toxic metals. Proc. Natl. Acad. Sci. USA 2008, 105, 17567–17572.
- 24.
Zucca,A.; Segura-Aguilar, J.; Ferrari, E.; et al. Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog. Neurobiol. 2017, 155, 96–119.
- 25.
Xu,; Chan, P. Interaction between neuromelanin and alpha-synuclein in Parkinson’s disease. Biomolecules 2015, 5, 1122–1142.
- 26.
Xuan,; Xu, S.L.; Lu, D.H.; et al. Increased expression of α-synuclein in aged human brain associated with neuromelanin accumulation. J. Neural Transm. 2011, 118, 1575–1583.
- 27.
Nagatsu,; Nakashima, A.; Wakamatsu, K. Neuromelanin in Parkinson’s disease: Tyrosine hydroxylase and tyrosinase. Int. J. Mol. Sci. 2022, 23, 4176.
- 28.
Wakamatsu,; Tanaka, H.; Tabuchi, K.; et al. Reduction of the nitro group to amine by hydroiodic acid to synthesize o-aminophenol derivatives as putative degradative markers of neuromelanin. Molecules 2014, 19, 8039–8050.
- 29.
Jinsmaa,; Cooney, A.; Sullivan, P.; et al. The serotonin aldehyde, 5-HIAL, oligomerizes alpha-synuclein. Neurosci. Lett. 2015, 590, 134–137.
- 30.
Plotegher,; Berti, G.; Ferrari, E.; et al. DOPAL derived alpha-synuclein oligomers impair synaptic vesicles physiological function. Sci. Rep. 2017, 7, 40699.
- 31.
Carmo-Gonçalves,; do Nascimento, L.A.; Cortines, J.R.; et al. Exploring the role of methionine residues on the oligomerization and neurotoxic properties of DOPAL-modified α-synuclein. Biochem. Biophys. Res. Commun. 2018, 505, 295–301.
- 32.
He,; Wang, F.; Yung, K.K.L.; et al. Effects of α-synuclein-associated post-translational modifications in Parkinson’s disease. ACS Chem. Neurosci. 2021, 12, 1061–1071.
- 33.
Plotegher,; Bubacco, L. Lysines, Achilles’ heel in alpha-synuclein conversion to a deadly neuronal endotoxin. Aging Res. Rev. 2016, 26, 62–71.
- 34.
Zhou,; Gallagher, A.; Hong, D.-P.; et al. At low concentrations, 3,4-dihydroxyphenylacetic acid (DOPAC) binds non-covalently to alpha-synuclein and prevents its fibrillation. J. Mol. Biol. 2009, 388, 597–610.
- 35.
Ferrari,; Engelen, M.; Monzani, E.; et al. Synthesis and structural characterization of soluble neuromelanin analogs provides important clues to its biosynthesis. J. Biol. Inorg. Chem. 2013, 18, 81–93.
- 36.
Ferrari,; Capucciati, A.; Prada, I.; et al. Synthesis, structure characterization, and evaluation in microglia cultures of neuromelanin analogues suitable for modeling Parkinson’s disease. ACS Chem. Neurosci. 2017, 8, 501–512.
- 37.
Capucciati,; Monzani, E.; Sturini, M.; et al. Water-soluble melanin–protein–Fe/Cu conjugates derived from norepinephrine as reliable models for neuromelanin of human brain locus coeruleus. Angew. Chem. Int. Ed. 2022, 61, e202204787.
- 38.
Ito, Encapsulation of a reactive core in neuromelanin. Proc. Natl. Acad. Sci. USA 2006, 103, 14647–14648.
- 39.
Bush,D.; Garguilo, J.; Zucca, F.A.; et al. The surface oxidation potential of human neuromelanin reveals a spherical architecture with a pheomelanin core and a eumelanin surface. Proc. Natl. Acad. Sci. USA 2006, 103, 14785–14789.
- 40.
Wise,M.; Wagener, A.; Fietzek, U.M.; et al. Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson’s disease and neurodegeneration with brain iron accumulation disorders. Neurobiol. Dis. 2022, 175, 105920.
- 41.
Robbins,H. Preparation and properties of p-hydroxyphenylacetaldehyde and 3-methoxy-4-hydroxyphenylacetaldehyde. Arch. Biochem. Biophys. 1966, 114, 576–584.
- 42.
Bou-Abdallah,; Chasteen, N.D. Spin concentration measurements of high-spin (g’ = 4.3) rhombic iron(III) ions in biological samples: Theory and application. J. Biol. Inorg. Chem. 2008, 13, 15–24.
- 43.
Ito,; Sugumaran, M.; Wakamatsu, K. Chemical reactivities of ortho-quinones produced in living organisms: Fate of quinonoids produced by tyrosinase and phenoloxidase action on phenols and catechols. Int. J. Mol. Sci. 2020, 21, 6080.
- 44.
Wakamatsu,; Nakao, K.; Tanaka, H.; et al. The oxidative pathway to dopamine–protein conjugates and their pro-oxidant activities: Implications for the neurodegeneration of Parkinson’s disease. Int. J. Mol. Sci. 2019, 20, 2575.
- 45.
Zucca,A.; Capucciati, A.; Bellei, C.; et al. Neuromelanins in brain aging and Parkinson’s disease: Synthesis, structure, neuroinflammatory, and neurodegenerative role. IUBMB Life 2023, 75, 55–65. https://doi.org/10.1002/iub.2654.
- 46.
Arosio,; Elia, L.; Poli, M. Ferritin, cellular iron storage and regulation. IUBMB Life 2017, 69, 414–422.
- 47.
Zecca,; Shima, T.; Stroppolo, A.; et al. Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. Neuroscience 1996, 73, 407–415.
- 48.
Zecca,; Stroppolo, A.; Gatti, A.; et al. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc. Natl. Acad. Sci. USA 2004, 101, 9843–9848.
- 49.
Capucciati,; Zucca, F.A.; Monzani, E.; et al. Interaction of neuromelanin with xenobiotics and consequences for neurodegeneration; promising experimental models. Antioxidants 2021, 10, 824.