2511002191
  • Open Access
  • Review

Tyrosinase, a Timeless Enzyme: Transition-State Analogues as Probes of Structure-Function Relationships and Inhibition

  • Hélène Jamet 1,   
  • Catherine Belle 1,   
  • Montserrat Soler-López 2,   
  • Ariane Jalila Simaan 3,   
  • Marius Réglier 3,*

Received: 22 Sep 2025 | Revised: 27 Oct 2025 | Accepted: 06 Nov 2025 | Published: 18 Nov 2025

Abstract

Tyrosinase (TYR) is a type-3 copper enzyme that catalyzes the key steps of melanogenesis, namely the two-step oxidation of monophenols to catechols and their subsequent conversion into ortho-quinones. This catalytic activity underlies the biosynthesis of melanin pigments and links TYR to a broad spectrum of biological processes and human health conditions, from pigmentation disorders to melanoma. The binuclear copper center of TYR is highly conserved across species, with both coppers coordinated by three histidine residues. Nevertheless, variations in the access channel and in the second coordination sphere introduce important differences in substrate selectivity and activity control. Structural and mechanistic studies have greatly benefited from the use of so-called transition-state analogs (TSAs)—more accurately, stable mimics of catalytic intermediates in the two-step reaction. Classical examples such as kojic acid, tropolone, L-mimosine, and 2-hydroxypyridine N-oxide (HOPNO) have provided fundamental insights into TYR active site geometry, electron transfer, and ligand interactions. Derivatives embedding the HOPNO motif, either into aurone scaffolds or amino acid frameworks, have further highlighted the structural plasticity of the enzyme as well as the striking differences in inhibitor recognition across fungal, bacterial, and human TYRs. These findings underscore the importance of working with the appropriate enzymatic models when seeking biomedical applications. From a translational perspective, the design of selective TYR inhibitors remains a major challenge, particularly given the strong metal-chelating properties of many TSA-like compounds and their potential off-target effects on other metalloenzymes. Embedding the HOPNO motif into amino acids or peptides represents a promising strategy to achieve selectivity while retaining high affinity. Finally, beyond the active site, recent evidence showing that mutations within the cysteine-rich domain can disrupt enzyme folding and abolish TYR activity suggests unexplored avenues for inhibition, broadening the horizon for both biomedical and cosmetic applications.

References 

  • 1.
    Bertrand, Sur la presence simultanée de la laccase et de la tyrosinase dans le suc de quelques champignons. C. R. Acad. Sci. 1896, 123, 463–465.
  • 2.
    Lehn, -M.; Malmström, B.G.; Selin, E.; et al. Metal Analysis of the Laccase of Gabriel Bertrand (1897). Trends Biochem. Sci. 1986, 11, 228–230.
  • 3.
    Uiterkamp, J.M.S.; Mason, H.S. Magnetic Dipole-Dipole Coupled Cu(II) Pairs in Nitric Oxide-Treated Tyrosinase: A Structural Relationship Between the Active Sites of Tyrosinase and Hemocyanin. Proc. Natl. Acad. Sci. USA 1973, 70, 993–996.
  • 4.
    Makino, ; McMahill, P.; Mason, H.S.; et al. The Oxidation State of Copper in Resting Tyrosinase. J. Biol. Chem. 1974, 19, 6062–6066.
  • 5.
    Lerch, Neurospora Tyrosinase: Molecular Weight, Copper Content and Spectral Properties. FEBS Lett. 1976, 69, 157–160.
  • 6.
    Solomon, I.; Heppner, D.E.; Johnston, E.M.; et al. Copper Active Sites in Biology. Chem. Rev. 2014, 114, 3659–3853.
  • 7.
    Solomon, I. Electronic Structures of Active Sites in Copper Proteins: Contributions to Reactivity. J. Inorg. Biochem. 1993, 51, 450.
  • 8.
    Ji, ; Guan, L.; Hu, Z.; et al. A Comprehensive Review on Hemocyanin from Marine Products: Structure, Functions, Its Implications for the Food Industry and Beyond. Int. J. Biol. Macromol. 2024, 269, 132041.
  • 9.
    Kaintz, ; Mauracher, S.G.; Rompel, A. Chapter One Type-3 Copper Proteins Recent Advances on Polyphenol Oxidases. Adv. Protein Chem. Struct. Biol. 2014, 97, 1–35.
  • 10.
    Belle, Catechol Oxidase and Tyrosinase. in Encyclopedia of Metalloproteins; Springer: New York, NY, USA, 2013; pp. 574–579.
  • 11.
    Bijelic, ; Rompel, A.; Belle, C. From Enzymes to Synthetic Models. In Bioinspired Chemistry, Series on Chemistry, Energy and the Environment; Kadish, K., Guilard, R., Eds.; World Scientific: Singapore, 2019; pp. 155–183.
  • 12.
    Pretzler, ; Rompel, A. Tyrosinases: A Family of Copper-Containing Metalloenzymes. ChemTexts 2024, 10, 12.
  • 13.
    Yamazaki, -I.; Itoh, S. Kinetic Evaluation of Phenolase Activity of Tyrosinase Using Simplified Catalytic Reaction System. J. Am. Chem. Soc. 2003, 125, 13034–13035.
  • 14.
    Molitor, ; Mauracher, S.G.; Rompel, A. Aurone Synthase Is a Catechol Oxidase with Hydroxylase Activity and Provides Insights into the Mechanism of Plant Polyphenol Oxidases. Proc. Natl. Acad. Sci. USA 2016, 113, E1806–E1815.
  • 15.
    Gerdemann, ; Eicken, C.; Krebs, B. The Crystal Structure of Catechol Oxidase: New Insight into the Function of Type-3 Copper Proteins. Acc. Chem. Res. 2002, 35, 183–191.
  • 16.
    Kitajima, ; Fujisawa, K.; Morooka, Y.; et al. μ-η2:η2-Peroxo Binuclear Copper Complex, [Cu(HB(3,5-(Me2CH)2pz)3)]2(O2). J. Am. Chem. Soc. 1989, 111, 8975–8976.
  • 17.
    Magnus, A.; Hazes, B.; Ton-That, H.; et al. Crystallographic Analysis of Oxygenated and Deoxygenated States of Arthropod Hemocyanin Shows Unusual Differences. Proteins Struct. Funct. Bioinform. 1994, 19, 302–309.
  • 18.
    Matoba, ; Kumagai, T.; Yamamoto, A.; et al. Crystallographic Evidence That the Dinuclear Copper Center of Tyrosinase Is Flexible during Catalysis. J. Biol. Chem. 2006, 281, 8981–8990.
  • 19.
    Fujieda, ; Umakoshi, K.; Ochi, Y.; et al. Copper-Oxygen Dynamics in the Tyrosinase Mechanism. Angew. Chem. Int. Ed. 2020, 59, 13385–13390.
  • 20.
    Butler, J.; Day, A.W. Fungal Melanins: A Review. Can. J. Microbiol. 1998, 44, 1115–1136.
  • 21.
    Choudhury, ; Ghosh, D. Elucidating the Structure of Melanin and Its Structure-Property Correlation. Acc. Chem. Res. 2025, 58, 1509–1518.
  • 22.
    Napolitano, ; Panzella, L.; Leone, L.; et al. Red Hair Benzothiazines and Benzothiazoles: Mutation-Inspired Chemistry in the Quest for Functionality. Acc. Chem. Res. 2013, 46, 519–528.
  • 23.
    Zucca, A.; Giaveri, G.; Gallorini, M.; et al. The Neuromelanin of Human Substantia Nigra: Physiological and Pathogenic Aspects. Pigm. Cell Mel. Res. 2004, 17, 610–617.
  • 24.
    d’Ischia, ; Wakamatsu, K.; Napolitano, A.; et al. Melanins and Melanogenesis: Methods, Standards, Protocols. Pigm. Cell Mel. Res. 2013, 26, 616–633.
  • 25.
    d’Ischia, ; Wakamatsu, K.; Cicoira, F.; et al. Melanins and Melanogenesis: From Pigment Cells to Human Health and Technological Applications. Pigm. Cell Mel. Res. 2015, 28, 520–544.
  • 26.
    Hong, ; Simon, J.D. Current Understanding of the Binding Sites, Capacity, Affinity, and Biological Significance of Metals in Melanin. J. Phys. Chem. B 2007, 111, 7938–7947.
  • 27.
    Chatelain, ; Gasparini, J.; Jacquin, L.; et al. The Adaptive Function of Melanin-Based Plumage Coloration to Trace Metals. Biol. Lett. 2014, 10, 20140164.
  • 28.
    McGraw, J. Melanins, Metals, and Mate Quality. Oikos 2003, 102, 402–406.
  • 29.
    Solano, New Insights into the Active Site Structure and Catalytic Mechanism of Tyrosinase and Its Related Proteins. Pigm. Cell Mel. Res. 2009, 22, 750–760.
  • 30.
    Lai, ; Wichers, H.J.; Soler-López, M.; et al. Structure and Function of Human Tyrosinase and Tyrosinase-Related Proteins. Chemistry 2018, 24, 47–55.
  • 31.
    Tsukamoto, K.; Jackson, I.J.; Urabe, K.; et al. A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome EMBO J. 1992, 11, 519–526.
  • 32.
    Gautron, ; Migault, M.; Bachelot, L.; et al. Human TYRP1: Two Functions for a Single Gene? Pigm. Cell Mel. Res. 2021, 34, 836–852.
  • 33.
    Lai, ; Wichers, H.J.; Soler-López, M.; et al. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis. Angew. Chem. Int. Ed. 2017, 56, 9812–9815.
  • 34.
    Faure, ; Ng, Y.M.; Belle, C.; et al. Interactions of Phenylalanine Derivatives with Human Tyrosinase: Lessons from Experimental and Theoretical Studies. ChemBioChem 2024, 25, e202400235.
  • 35.
    Dolinska, B.; Wingfield, P.T.; Young, K.L.; et al. The TYRP1-mediated Protection of Human Tyrosinase Activity Does Not Involve Stable Interactions of Tyrosinase Domains. Pigm. Cell Mel. Res. 2019, 32, 753–765.
  • 36.
    Ishikawa, ; Kawase, I.; Ishii, F. Combination of Amino Acids Reduces Pigmentation in B16F0 Melanoma Cells. Biol. Pharm. Bull. 2007, 30, 677–681.
  • 37.
    Petris, M.J.; Strausak, D.; Mercer, J.F.B. The Menkes copper transporter is required for the activation of Hum. Mol. Genet. 2000, 9, 2845–2851.
  • 38.
    Wagatsuma, T.; Suzuki, E.; Shiotsu, M.; et al. Pigmentation and TYRP1 expression are mediated by zinc through the early secretory pathway-resident ZNT Commun. Biol. 2023, 6, 403.
  • 39.
    Solano, On the metal cofactor in the tyrosinase family. Int. J. Mol. Sci. 2018, 19, 633.
  • 40.
    Tepper, W.J.W.; Lonardi, E.; Bubacco, L.; et al. Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd: Chichester, UK, 2013.
  • 41.
    Solomon, I.; Sundaram, U.M.; Machonkin, T.E. Multicopper Oxidases and Oxygenases. Chem. Rev. 1996, 96, 2563–2606.
  • 42.
    Klabunde, ; Eicken, C.; Sacchettini, J.C.; et al. Crystal Structure of a Plant Catechol Oxidase Containing a Dicopper Center. Nat. Struct. Mol. Biol. 1998, 5, 1084–1090.
  • 43.
    Prexler, M.; Frassek, M.; Moerschbacher, B.M.; et al. Catechol Oxidase versus Tyrosinase Classification Revisited by Site-Directed Mutagenesis Studies. Angew. Chem. Int. Ed. 2019, 58, 8757–8761.
  • 44.
    Volbeda, ; Hol, W.G.J. Crystal Structure of Hexamerici Haemocyanin from Panulirus Interruptus Refined at 3.2 Å Resolution. J. Mol. Biol. 1989, 209, 249–279.
  • 45.
    Matoba, ; Kihara, S.; Muraki, Y.; et al. Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein. Biochemistry 2017, 56, 5593–5603.
  • 46.
    Fernández-Díaz, ; Roldán-Martín, L.; Sodupe, M.; et al. BioBrigit, a Hybrid Machine Learning and Knowledge-Based Approach to Model Metal Pathways in Proteins: Application to a Dicopper Tyrosinase. ACS Omega 2025, 10, 24412–24421.
  • 47.
    Sendovski, ; Kanteev, M.; Ben-Yosef, V.S.; et al. First Structures of an Active Bacterial Tyrosinase Reveal Copper Plasticity. J. Mol. Biol. 2011, 405, 227–237.
  • 48.
    Fekry, ; Dave, K.K.; Badgujar, D.; et al. The Crystal Structure of Tyrosinase from Verrucomicrobium spinosum Reveals It to Be an Atypical Bacterial Tyrosinase. Biomolecules 2023, 13, 1360.
  • 49.
    Fujieda, ; Yabuta, S.; Ikeda, T.; et al. Crystal Structures of Copper-Depleted and Copper-Bound Fungal pro-Tyrosinase: Insights into Endogenous Cysteine-Dependent Copper Incorporation. J. Biol. Chem. 2013, 288, 22128–22140.
  • 50.
    Ismaya, T.; Rozeboom, H.J.; Weijn, A.; et al. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 2011, 50, 5477–5486.
  • 51.
    Bijelic, ; Pretzler, M.; Molitor, C.; et al. The Structure of a Plant Tyrosinase from Walnut Leaves Reveals the Importance of “Substrate-Guiding Residues” for Enzymatic Specificity. Angew. Chem. Int. Ed. 2015, 54, 14677–14680.
  • 52.
    Li, ; Wang, Y.; Jiang, H.; et al. Crystal Structure of Manduca sexta Prophenoloxidase Provides Insights into the Mechanism of Type-3 Copper Enzymes. Proc. Natl. Acad. Sci. USA 2009, 106, 17002–17006.
  • 53.
    Masuda, ; Momoji, K.; Hirata, T.; et al. The Crystal Structure of a Crustacean Prophenoloxidase Provides a Clue to Understanding the Functionality of the Type-3 Copper Proteins. FEBS J. 2014, 281, 2659–2673.
  • 54.
    Deeth, J.; Diedrich, C. Structural and Mechanistic Insights into the Oxy Form of Tyrosinase from Molecular Dynamics Simulations. J. Biol. Inorg. Chem. 2010, 15, 117–129.
  • 55.
    Mauracher, G.; Molitor, C.; Al-Oweini, R.; et al. Latent and Active abPPO4 Mushroom Tyrosinase Cocrystallized with Hexatungstotellurate(VI) in a Single Crystal. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 2301–2315.
  • 56.
    Pretzler, ; Bijelic, A.; Rompel, A. Heterologous Expression and Characterization of Functional Mushroom Tyrosinase (AbPPO4). Sci. Rep. 2017, 7, 1–10.
  • 57.
    Addison, A.W.; Rao, T.N.; Reedijk, J.; et al. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) J. Chem. Soc. Dalton Trans. 1984, 1349–1356.
  • 58.
    Toay, ; Sergeev, Y.V. Genetic Mutations Disrupt the Coordinated Mode of Tyrosinase’s Intra-melanosomal Domain. Protein Sci. 2025, 34, e70209.
  • 59.
    Lai, ; Soler-Lòpez, M.; Wichers, H.J.; et al. Large-Scale Recombinant Expression and Purification of Human Tyrosinase Suitable for Structural Studies. PLoS ONE 2016, 11, e0161697.
  • 60.
    Favre, ; Daina, A.; Carrupt, P.-A.; et al. Modeling the Met Form of Human Tyrosinase: A Refined and Hydrated Pocket for Antagonist Design. Chem. Biol. Drug Des. 2014, 84, 206–215.
  • 61.
    Nokinsee, ; Shank, L.; Lee, V.S.; et al. Estimation of Inhibitory Effect against Tyrosinase Activity through Homology Modeling and Molecular Docking. Enzym. Res. 2015, 2015, 262364.
  • 62.
    Jumper, ; Evans, R.; Pritzel, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589.
  • 63.
    Aguilera, ; McDougall, C.; Degnan, B.M. Origin, Evolution and Classification of Type-3 Copper Proteins: Lineage-Specific Gene Expansions and Losses across the Metazoa. BMC Evol. Biol. 2013, 13, 96.
  • 64.
    Solem, ; Tuczek, F.; Decker, H. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference. Angew. Chem. Int. Ed. 2016, 55, 2884–2888.
  • 65.
    Decker, ; Solem, E.; Tuczek, F. Are Glutamate and Asparagine Necessary for Tyrosinase Activity of Type-3 Copper Proteins? Inorg. Chim. Acta 2018, 481, 32–37.
  • 66.
    Goldfeder, ; Isaschar-Ovdat, S.; Fishman, A. Determination of Tyrosinase Substrate-Binding Modes Reveals Mechanistic Differences between Type-3 Copper Proteins. Nat. Commun. 2014, 5, 4505.
  • 67.
    Kampatsikas, I.; Bijelic, A.; Pretzler, M.; Rompel, A. Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol Sci. Rep. 2017, 7, 8860.
  • 68.
    Zou, ; Huang, W.; Zhao, G.; et al. Determination of the Bridging Ligand in the Active Site of Tyrosinase. Molecules 2017, 22, 1836–1847.
  • 69.
    Matoba, ; Yoshitsu, H.; Jeon, H.-J.; et al. Crystal Structure of the met2-form of the Copper-Bound Tyrosinase in Complex with a Caddie Protein from Streptomyces castaneoglobisporus obtained by Soaking in Cupric Sulfate Solution for 80 Hours. Available online: https://www.wwpdb.org/pdb?id=pdb_00002zmy (accessed on 21 April 2008).
  • 70.
    Bubacco, ; Spinazze, R.; della Longa, S.; et al. X-Ray Absorption Analysis of the Active Site of Streptomyces Antibioticus Tyrosinase upon Binding of Transition State Analogue Inhibitors. Arch. Biochem. Biophys. 2007, 465, 320–327.
  • 71.
    Cooksey, J.; Garratt, P.J.; Land, E.J.; et al. Evidence of the Indirect Formation of the Catecholic Intermediate Substrate Responsible for the Autoactivation Kinetics of Tyrosinase. J. Biol. Chem. 1997, 272, 26226–26235.
  • 72.
    Land, J.; Ramsden, C.A.; Riley, P.A. Tyrosinase Autoactivation and the Chemistry of Ortho-Quinone Amines. Acc. Chem. Res. 2003, 36, 300–308.
  • 73.
    Kitajima, ; Fujisawa, K.; Fujimoto, C.; et al. A New Model for Molecular oxygen Binding in Hemocyanin. Synthesis, Characterization, and Molecular Structure of the μ-η2:η2-Peroxo Dinuclear Copper(II) Complexes, [Cu(HB(3,5-R2pz)3)]2(O2) (R = Isopropyl and Ph). J. Am. Chem. Soc. 1992, 114, 1277–1291.
  • 74.
    Halfen, A.; Mahapatra, S.; Wilkinson, E.C.; et al. Reversible Cleavage and Formation of the Molecular oxygen O-O Bond within a Dicopper Complex. Science 1996, 271, 1397–1400.
  • 75.
    Karlin, D.; Kaderli, S.; Zuberbühler, A.D. Kinetics and Thermodynamics of Copper(I)/Molecular oxygen Interaction. Acc. Chem. Res. 1997, 30, 139–147.
  • 76.
    Liang, -C.; Dahan, M.; Karlin, K.D. Molecular oxygen-Activating Bio-Inorganic Model Complexes. Curr. Op. Chem. Biol. 1999, 3, 168–175.
  • 77.
    Mirica, M.; Ottenwaelder, X.; Stack, T.D.P. Structure and Spectroscopy of Copper-Molecular oxygen Complexes. Chem. Rev. 2004, 104, 1013–1045.
  • 78.
    Rolff, ; Decker, H.; Tuczek, F. Copper-O2 Reactivity of Tyrosinase Models towards External Monophenolic Substrates: Molecular Mechanism and Comparison with the Enzyme. Chem. Soc. Rev. 2011, 40, 4077–22.
  • 79.
    Keown, ; Gary, J.B.; Stack, T.D.P. High-Valent Copper in Biomimetic and Biological Oxidations. J. Biol. Inorg. Chem. 2017, 22, 289–305.
  • 80.
    Itoh, Developing Mononuclear Copper-Active-Oxygen Complexes Relevant to Reactive Intermediates of Biological Oxidation Reactions. Acc. Chem. Res. 2015, 48, 2066–2074.
  • 81.
    Elwell, E.; Gagnon, N.L.; Neisen, B.D.; et al. Copper-Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity. Chem. Rev. 2017, 117, 2059–2107.
  • 82.
    Quist, A.; Diaz, D.E.; Liu, J.J.; et al. Activation of Molecular oxygen by Copper Metalloproteins and Insights from Model Complexes. J. Biol. Inorg. Chem. 2017, 22, 253–288.
  • 83.
    De Tovar, ; Leblay, R.; Wang, Y.; et al. Copper-Oxygen Adducts: New Trends in Characterization and Properties towards C-H Activation. Chem. Sci. 2024, 15, 10308–10349.
  • 84.
    Nasir, S.; Cohen, B.I.; Karlin, K.D. Mechanism of Aromatic Hydroxylation in a Copper Monooxygenase Model System. 1,2-Methyl Migrations and the NIH Shift in Copper Chemistry. J. Am. Chem. Soc. 1992, 114, 2482–2494.
  • 85.
    Kock, ; Engesser, T.A.; Jurgeleit, R.; et al. Monooxygenation of Phenols by Small-molecule Models of Tyrosinase: Correlations Between Structure and Catalytic Activity. In Copper Bioinorganic Chemistry, From Health to Bioinspired Catalysis; Simaan, A.J., Réglier, M., Eds.; World Scientific: Singapore, 2023; pp. 123–149.
  • 86.
    Gupta, ; Mukerherjee, R. Modeling Tyrosinase Activity Using m-Xylyl-Based Ligands: Ring Hydroxylation, Reactivity, and Theoretical Investigation. In Copper Bioinorganic Chemistry, From Health to Bioinspired Catalysis; Simaan, A.J., Réglier, M., Eds.; World Scientific: Singapore, 2023; pp. 81–118.
  • 87.
    Réglier, ; Jorand, C.; Waegell, B. Binuclear Copper Complex Model of Tyrosinase. Chem. Commun. 1990, 1752–1755.
  • 88.
    Casella, ; Gullotti, M.; Radaelli, R.; et al. A Tyrosinase Model System. Phenol Ortho -Hydroxylation by a Binuclear Three-Coordinate Copper(I) Complex and Dioxygen. Chem. Commun. 1991, 1611–1612.
  • 89.
    Rolff, ; Schottenheim, J.; Tuczek, F. Monooxygenation of External Phenolic Substrates in Small-Molecule Dicopper Complexes: Implications on the Reaction Mechanism of Tyrosinase. J. Coord. Chem. 2010, 63, 2382–2399.
  • 90.
    Rolff, ; Tuczek, F. The First Catalytic Tyrosinase Model System Based on a Mononuclear Copper(I) Complex: Kinetics and Mechanism. Angew. Chem. Int. Ed. 2010, 49, 6438–6442.
  • 91.
    Presti, L.; Perrone, M.L.; Santagostini, L.; et al. A Stereoselective Tyrosinase Model Compound Derived from an m-Xylyl-l histidine Ligand. Inorg. Chem. 2019, 58, 7335–7344.
  • 92.
    Itoh, ; Kumei, H.; Taki, M.; et al. Oxygenation of Phenols to Catechols by A (μ-η2:η2-Peroxo)Dicopper(II) Complex: Mechanistic Insight into the Phenolase Activity of Tyrosinase. J. Am. Chem. Soc. 2001, 123, 6708–6709.
  • 93.
    Herres-Pawlis, ; Verma, P.; Haase, R.; et al. Phenolate Hydroxylation in a Bis(μ-Oxo)Dicopper(III) Complex: Lessons from the Guanidine/Amine Series. J. Am. Chem. Soc. 2009, 131, 1154–1169.
  • 94.
    Deri, ; Kanteev, M.; Goldfeder, M.; et al. The Unravelling of the Complex Pattern of Tyrosinase Inhibition. Sci. Rep. 2016, 6, 34993.
  • 95.
    Decker, ; Schweikardt, T.; Tuczek, F. The First Crystal Structure of Tyrosinase: All Questions Answered? Angew. Chem. Int. Ed. 2006, 45, 4546–4550.
  • 96.
    Citek, ; Lyons, C.T.; Wasinger, E.C.; et al. Self-Assembly of the Oxy-Tyrosinase Core and the Fundamental Components of Phenolic Hydroxylation. Nat. Chem. 2012, 4, 317–322.
  • 97.
    Mirica, M.; Rudd, D.J.; Vance, M.A.; et al. μ-η2:η2-Peroxodicopper(II) Complex with a Secondary Diamine Ligand: A Functional Model of Tyrosinase. J. Am. Chem. Soc. 2006, 128, 2654–2665.
  • 98.
    Holt, T.O.; Vance, M.A.; Mirica, L.M.; et al. Reaction Coordinate of a Functional Model of Tyrosinase: Spectroscopic and Computational Characterization. J. Am. Chem. Soc. 2009, 131, 6421–6438.
  • 99.
    Qayyum, F.; Sarangi, R.; Fujisawa, K.; et al. L-Edge X-Ray Absorption Spectroscopy and DFT Calculations on Cu2O2 Species: Direct Electrophilic Aromatic Attack by Side-on Peroxo Bridged Dicopper(II) Complexes. J. Am. Chem. Soc. 2013, 135, 17417–17431.
  • 100.
    Hoffmann, ; Citek, C.; Binder, S.; et al. Catalytic Phenol Hydroxylation with Molecular oxygen: Extension of the Tyrosinase Mechanism beyond the Protein Matrix. Angew. Chem. Int. Ed. 2013, 52, 5398–5401.
  • 101.
    Mirica, M.; Vance, M.A.; Rudd, D.J.; et al. Tyrosinase Reactivity in a Model Complex: An Alternative Hydroxylation Mechanism. Science 2005, 308, 1890–1892.
  • 102.
    Company, ; Palavicini, S.; Garcia-Bosch, I.; et al. Tyrosinase-like Reactivity in a Cu2(III)(μ-O)2 Species. Chem. Eur. J. 2008, 14, 3535–3538.
  • 103.
    Large, A.G.; Keown, W.; Gary, J.B.; et al. Imidazolate-Stabilized Cu(III): Molecular oxygen to Oxides at Type-3 Copper Sites. Angew. Chem. Int. Ed. 2024, 64, e202416967.
  • 104.
    Chiang, ; Keown, W.; Citek, C.; et al. Simplest Monodentate Imidazole Stabilization of the oxy-Tyrosinase Cu2O2 Core: Phenolate Hydroxylation through a CuIII Intermediate. Angew. Chem. Int. Ed. 2016, 128, 10609–10613.
  • 105.
    Kipouros, ; Stańczak, A.; Ginsbach, J.W.; et al. Elucidation of the Tyrosinase/O2/Monophenol Ternary Intermediate That Dictates the Monooxygenation Mechanism in Melanin Biosynthesis. Proc. Natl. Acad. Sci. USA 2022, 119, e2205619119.
  • 106.
    Kipouros, ; Solomon, E.I. New Mechanistic Insights into Coupled Binuclear Copper Monooxygenases from the Recent Elucidation of the Ternary Intermediate of Tyrosinase. FEBS Lett. 2023, 597, 65–78.
  • 107.
    Kipouros, ; Stańczak, A.; Culka, M.; et al. Evidence for H-Bonding Interactions to the μ-η2:η2-Peroxide of Oxy-Tyrosinase That Activate Its Coupled Binuclear Copper Site. Chem. Commun. 2022, 58, 3913–3916.
  • 108.
    Kipouros, ; Sańczak, A.; Dunietz, E.M.; et al. Experimental Evidence and Mechanistic Description of the Phenolic H Transfer to the Cu2O2 Active Site of Oxy-Tyrosinase. J. Am. Chem. Soc. 2023, 145, 22866–22870.
  • 109.
    Stańczak, ; Kipouros, I.; Eminger, P.; et al. Coupled Binuclear Copper Sites in Biology: An Experimentally-Calibrated Computational Perspective. Coord. Chem. Rev. 2025, 525, 216301.
  • 110.
    Tudela, ; Lozano, J.A.; Garcia-Canovas, F. L-Mimosine a Slow-Binding Inhibitor of Mushroom Tyrosinase. Phytochemistry 1987, 26, 917–919.
  • 111.
    Chen, S.; Wei, C.; Rolle, R.S.; et al. Inhibitory Effect of Kojic Acid on Some Plant and Crustacean Polyphenol Oxidases. J. Agr. Food Chem. 1991, 39, 1396–1401.
  • 112.
    Espín, C.; Wichers, H.J. Slow-Binding Inhibition of Mushroom (Agaricus bisporus) Tyrosinase Isoforms by Tropolone. J. Agr. Food Chem. 1999, 47, 2638–2644.
  • 113.
    Peyroux, ; Ghattas, W.; Hardré, R.; et al. Binding of 2-hydroxypyridine-N-oxide on dicopper(II) centers: Insights into tyrosinase inhibition mechanism by transition-state analogs. Inorg. Chem. 2009, 48, 10874–10876.
  • 114.
    Kahn, V.; Andrawis, A. Inhibition of mushroom tyrosinase by Phytochemistry 1985, 24, 905–908.
  • 115.
    Bubacco, L.; Van Gastel, M.; Groenen, E.J.J.; et al. Spectroscopic characterization of the electronic changes in the active site of Streptomyces antibioticus tyrosinase upon binding of transition state analogue J. Biol. Chem. 2003, 278, 7381–7389.
  • 116.
    van Gastel, M.; Bubacco, L.; Groenen, E.J.J.; et al. EPR study of the dinuclear active copper site of tyrosinase from Streptomyces antibioticus. FEBS Lett. 2000, 474, 228–232.
  • 117.
    Benfatto, M.; Della Longa, S.; Pace, E.; et al. MXAN: A new program for ab-initio structural quantitative analysis of XANES Comput. Phys. Commun. 2021, 265, 107992.
  • 118.
    Bochot, ; Gouron, A.; Bubacco, L.; et al. Probing Kojic Acid Binding to Tyrosinase Enzyme: Insights from a Model Complex and QM/MM Calculations. Chem. Comm. 2014, 50, 308–310.
  • 119.
    Faure, C.; d’Hardemare, A.M.; Jamet, H.; et al. Transition State Analogue Molecules as Mechanistic Tools and Inhibitors of In Copper Bioinorganic Chemistry, From Health to Bioinspired Catalysis; Simaan, A.J., Réglier, M., Eds.; World Scientific: Singapore, 2023; pp. 45–80.
  • 120.
    Orio, ; Bochot, C.; Dubois, C.; et al. The Versatile Binding Mode of Transition-State Analogue Inhibitors of Tyrosinase towards Dicopper(II) Model Complexes: Experimental and Theoretical Investigations. Chem. Eur. J. 2011, 17, 13482–13494.
  • 121.
    Bochot, ; Favre, E.; Dubois, C.; et al. Unsymmetrical Binding Modes of the HOPNO Inhibitor of Tyrosinase: From Model Complexes to the Enzyme. Chem. Eur. J. 2013, 19, 3655–3664.
  • 122.
    Bastonini, ; Kovacs, D.; Picardo, M. Skin Pigmentation and Pigmentary Disorders: Focus on Epidermal/Dermal Cross-Talk. Ann. Dermatol. 2016, 28, 279–289.
  • 123.
    Ali, ; Niaimi, F.A. Pathogenesis of Melasma Explained. Int. J. Dermatol. 2025, 64, 1201–1212.
  • 124.
    Mahrous, H.; Abdel-dayem, S.I.A.; Adel, I.M.; et al. Efficacy of Natural Products as Tyrosinase Inhibitors in Hyperpigmentation Therapy: Anti-Melanogenic or Anti-Browning Effects. Chem. Biodivers. 2025, 22, e202403324.
  • 125.
    Wang, ; Gao, X.; Zhang, L. Recent Global Patterns in Skin Cancer Incidence, Mortality, and Prevalence. Chin. Med. J. 2025, 138, 185–192.
  • 126.
    Boyle, L.; Boyle, J.L.; Haupt, H.M.; et al. Tyrosinase Expression in Malignant Melanoma, Desmoplastic Melanoma, and Peripheral Nerve Tumors. Arch. Pathol. Lab. Med. 2002, 126, 816–822.
  • 127.
    Krasowska, ; Małek, A.; Kurzepa, J.; et al. Melanin—The Éminence Grise of Melanoma and Parkinson’s Disease Development. Cancers 2023, 15, 5541.
  • 128.
    Weinstein, ; Leininger, J.; Hamby, C.; et al. Diagnostic and Prognostic Biomarkers in Melanoma. J. Clin. Aesthet. Dermatol. 2014, 7, 13–24.
  • 129.
    Ankeny, J.S.; Labadie, B.; Luke, J.; et al. Review of diagnostic, prognostic, and predictive biomarkers in Clin. Exp. Metastasis 2018, 35, 487–493.
  • 130.
    Buitrago, ; Hardre, R.; Haudecoeur, R.; et al. Are Human Tyrosinase and Related Proteins Suitable Targets for Melanoma Therapy? Curr. Top. Med. Chem. 2016, 16, 3033–3047.
  • 131.
    Wang, ; Jiang, R.; Xiong, B.; et al. Clinical Investigation of Tyrosinase Inhibitors: Past, Present, and Future. Drug Dev. Res. 2025, 86, e70113.
  • 132.
    Ruzzi, ; Riccardo, F.; Conti, L.; et al. Cancer Vaccines: Target Antigens, Vaccine Platforms and Preclinical Models. Mol. Asp. Med. 2025, 101, 101324.
  • 133.
    Rezaei, ; Davoudian, E.; Khalili, S.; et al. Strategies in DNA Vaccine for Melanoma Cancer. Pigm. Cell Mel. Res. 2021, 34, 869–891.
  • 134.
    Vargas, J.; Sittadjody, S.; Thangasamy, T.; et al. Exploiting Tyrosinase Expression and Activity in Melanocytic Tumors: Quercetin and the Central Role of P53. Integr. Cancer Ther. 2011, 10, 328–340.
  • 135.
    Jawaid, ; Khan, T.H.; Osborn, H.M.I.; et al. Tyrosinase Activated Melanoma Prodrugs. Anti Cancer Agents Med. Chem. 2009, 9, 717–727.
  • 136.
    Cabaço, C.; Tomás, A.; Pojo, M.; et al. The Dark Side of Melanin Secretion in Cutaneous Melanoma Aggressiveness. Front. Oncol. 2022, 12, 887366.
  • 137.
    Slominski, M.; Sarna, T.; Płonka, P.M.; et al. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front. Oncol. 2022, 12, 842496.
  • 138.
    Rendon, ; Horwitz, S. Topical Treatment of Hyperpigmentation Disorders. Ann. Dermatol. Venereol. 2012, 139, S153–S158.
  • 139.
    Desai, Postinflammatory Hyperpigmentation and Other Disorders of Hyperpigmentation. In Treatment of Skin Disease: Comprehensive Therapeutic Strategies, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp 658–661.
  • 140.
    Akakpo, -S.; Mouhari-Toure, A.; Saka, B.; et al. Systemic Complications during Voluntary Cosmetic Depigmentation among Women in Togo: A Case-Control Study. Ann. Dermatol. Venereol. 2016, 143, 197–201.
  • 141.
    Mohdin, A. How the Colonial Legacy has Created a Toxic Beauty Available online: https://www.theguardian.com/world/2025/aug/14/thursday-briefing-how-the-colonial-legacy-has-created-a-toxic-beauty-industry?CMP=share_btn_url (accessed on 14 August 2025).
  • 142.
    Cadungog, G.E.; Yee, J.R.D.; Sucgang, R.J. Mercury in Online Skin-Lightening Cosmetics: A Health Risk Assessment of Products from Selected Asian Countries. Food Chem. Toxicol. 2025, 204, 115676.
  • 143.
    Loizzo, R.; Tundis, R.; Menichini, F. Natural and Synthetic Tyrosinase Inhibitors as Antibrowning Agents: An Update. Compr. Rev. Food Sci. Food Saf. 2012, 11, 378–398.
  • 144.
    Gębalski, J.; Graczyk, F.; Załuski, D. Paving the way towards effective plant-based inhibitors of hyaluronidase and tyrosinase: A critical review on a structure-activity J. Enzym. Inhib. Med. Chem. 2022, 37, 1120–1195.
  • 145.
    Vaezi, Structure and inhibition mechanism of some synthetic compounds and phenolic derivatives as tyrosinase inhibitors: Review and new insight. J. Biomol. Struct. Dyn. 2023, 41, 4798–4810.
  • 146.
    Peng, ; Wang, G.; Zeng, Q.-H.; et al. A Systematic Review of Synthetic Tyrosinase Inhibitors and Their Structure-Activity Relationship. Crit. Rev. Food Sci. 2022, 62, 1–42.
  • 147.
    Obaid, J.; Mughal, E.U.; Naeem, N.; et al. Natural and Synthetic Flavonoid Derivatives as New Potential Tyrosinase Inhibitors: A Systematic Review. RSC Adv. 2021, 11, 22159–22198.
  • 148.
    Riaz, ; Batool, S.; Zucca, P.; et al. Plants as a Promising Reservoir of Tyrosinase Inhibitors. Mini Rev. Org. Chem. 2021, 18, 808–828.
  • 149.
    Zhang, ; Bian, G.; Kang, P.; et al. Recent Advance in the Discovery of Tyrosinase Inhibitors from Natural Sources via Separation Methods. J. Enzym. Inhib. Med. Chem. 2021, 36, 2104–2117.
  • 150.
    Bonesi, ; Xiao, J.; Tundis, R.; et al. Advances in the Tyrosinase Inhibitors from Plant Source. Curr. Med. Chem. 2019, 26, 3279–3299.
  • 151.
    Hariri, ; Saeedi, M.; Akbarzadeh, T. Naturally occurring and synthetic peptides: Efficient tyrosinase inhibitors. J. Pept. Sci. 2021, 27, e3329.
  • 152.
    Chen, Y.; Adamek, R.N.; Dick, B.L.; et al. Targeting Metalloenzymes for Therapeutic Intervention. Chem. Rev. 2018, 119, 1323–1455.
  • 153.
    Jung, J.; Kim, H.J.; Park, H.S.; et al. Highly Potent Anti-Melanogenic Effect of 2-Thiobenzothiazole Derivatives through Nanomolar Tyrosinase Activity Inhibition. Bioorg. Chem. 2024, 150, 107586.
  • 154.
    Hałdys, ; Latajka, R. Thiosemicarbazones with Tyrosinase Inhibitory Activity. MedChemComm 2019, 10, 378–389.
  • 155.
    Beaumet, ; Lazinski, L.M.; Maresca, M.; et al. Tyrosinase Inhibition and Antimelanogenic Effects of Resorcinol-Containing Compounds. ChemMedChem 2024, 19, e202400314.
  • 156.
    Fogal, ; Carotti, M.; Giaretta, L.; et al. Human Tyrosinase Produced in Insect Cells: A Landmark for the Screening of New Drugs Addressing Its Activity. Mol. Biotechnol. 2014, 57, 45–57.
  • 157.
    Nesterov, ; Zhao, J.; Minter, D.; et al. 1-(2,4-Dihydroxyphenyl)-3-(2,4-Dimethoxy-3-Methylphenyl)Propane, a Novel Tyrosinase Inhibitor with Strong Depigmenting Effects. Chem. Pharm. Bulletin. 2008, 56, 1292–1296.
  • 158.
    Haudecoeur, ; Carotti, M.; Gouron, A.; et al. 2-Hydroxypyridine-N-Oxide-Embedded Aurones as Potent Human Tyrosinase Inhibitors. ACS Med. Chem. Lett. 2017, 8, 55–60.
  • 159.
    Lee, Y.S.; Park, J.H.; Kim, M.H.; et al. Synthesis of tyrosinase inhibitory kojic acid Arch. Pharm. 2006, 339, 111–114.
  • 160.
    Buitrago, ; Faure, C.; Challali, L.; et al. Ditopic Chelators of Dicopper Centers for Enhanced Tyrosinases Inhibition. Chem. Eur. J. 2021, 27, 4384–4393.
  • 161.
    Okombi, ; Rival, D.; Bonnet, S.; et al. Discovery of Benzylidenebenzofuran-3(2H)-One (Aurones) as Inhibitors of Tyrosinase Derived from Human Melanocytes. J. Med. Chem. 2006, 49, 329–333.
  • 162.
    Saroha, ; Kumar, G.; Kumar, S. Aurones as Versatile Enzyme Inhibitors: Recent Advancements, Structural Insights, Mechanisms, and Therapeutic Potential. Eur. J. Med. Chem. Rep. 2025, 15, 100280.
  • 163.
    Dubois, ; Haudecoeur, R.; Orio, M.; et al. Versatile Effects of Aurone Structure on Mushroom Tyrosinase Activity. ChemBioChem 2012, 13, 559–565.
  • 164.
    Marková, ; Kotik, M.; Křenková, A.; et al. Recombinant Tyrosinase from Polyporus arcularius: Overproduction in Escherichia Coli, Characterization, and Use in a Study of Aurones as Tyrosinase Effectors. J. Agr. Food Chem. 2016, 64, 2925–2931.
  • 165.
    Beaumet, ; Lazinski, L.M.; Maresca, M.; et al. Catechol-Mimicking Transition-State Analogues as Non-Oxidizable Inhibitors of Tyrosinases. Eur. J. Med. Chem. 2023, 259, 115672.
  • 166.
    Haudecoeur, ; Gouron, A.; Dubois, C.; et al. Investigation of Binding-Site Homology between Mushroom and Bacterial Tyrosinases by Using Aurones as Effectors. ChemBioChem 2014, 15, 1325–1333.
  • 167.
    Dubois, La Tyrosinase: Étude de Nouveaux Effecteurs. Ph.D. Thesis, Aix-Marseille Université: Marseille, France, October 2012.
  • 168.
    Buitrago, ; Faure, C.; Carotti, M.; et al. Exploiting HOPNO-Dicopper Center Interaction to Development of Inhibitors for Human Tyrosinase. Eur. J. Med. Chem. 2023, 248, 115090.
  • 169.
    Xu, ; Liang, X.; Kim, H.-M.; et al. In Vitro and In Silico Studies of Maculosin as a Melanogenesis and Tyrosinase Inhibitor. Molecules 2025, 30, 860.
  • 170.
    Ricci, ; Schira, K.; Khettabi, L.; et al. Computational Methods to Analyze and Predict the Binding Mode of Inhibitors Targeting Both Human and Mushroom Tyrosinase. Eur. J. Med. Chem. 2023, 260, 115771.
  • 171.
    Kang, ; Tong, H.H.Y.; Li, S. Discovery of Potential Tyrosinase Inhibitors via Machine Learning and Molecular Docking with Experimental Validation of Activity and Skin Permeation. ACS Omega 2025, 10, 38922–38932.
  • 172.
    OréMaldonado, A.; Cuesta, S.A.; Mora, J.R et al. Discovering New Tyrosinase Inhibitors by Using In Silico Modelling, Molecular Docking, and Molecular Dynamics. Pharmaceuticals 2025, 18, 418.
  • 173.
    Mirabile, S.; Pitasi, G.; Floris, S.; et al. Structure-Based Design and Evaluation of Tyrosinase Inhibitors Targeting Both Human and Mushroom Isozymes. RSC Med. Chem. 2025, 16, 3814–3825.
Share this article:
How to Cite
Jamet, H.; Belle, C.; Soler-López, M.; Simaan, A. J.; Réglier, M. Tyrosinase, a Timeless Enzyme: Transition-State Analogues as Probes of Structure-Function Relationships and Inhibition. Bioinorganics and Biocatalysis 2025, 1 (1), 3.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.