- 1.
Bertrand, Sur la presence simultanée de la laccase et de la tyrosinase dans le suc de quelques champignons. C. R. Acad. Sci. 1896, 123, 463–465.
- 2.
Lehn, -M.; Malmström, B.G.; Selin, E.; et al. Metal Analysis of the Laccase of Gabriel Bertrand (1897). Trends Biochem. Sci. 1986, 11, 228–230.
- 3.
Uiterkamp, J.M.S.; Mason, H.S. Magnetic Dipole-Dipole Coupled Cu(II) Pairs in Nitric Oxide-Treated Tyrosinase: A Structural Relationship Between the Active Sites of Tyrosinase and Hemocyanin. Proc. Natl. Acad. Sci. USA 1973, 70, 993–996.
- 4.
Makino, ; McMahill, P.; Mason, H.S.; et al. The Oxidation State of Copper in Resting Tyrosinase. J. Biol. Chem. 1974, 19, 6062–6066.
- 5.
Lerch, Neurospora Tyrosinase: Molecular Weight, Copper Content and Spectral Properties. FEBS Lett. 1976, 69, 157–160.
- 6.
Solomon, I.; Heppner, D.E.; Johnston, E.M.; et al. Copper Active Sites in Biology. Chem. Rev. 2014, 114, 3659–3853.
- 7.
Solomon, I. Electronic Structures of Active Sites in Copper Proteins: Contributions to Reactivity. J. Inorg. Biochem. 1993, 51, 450.
- 8.
Ji, ; Guan, L.; Hu, Z.; et al. A Comprehensive Review on Hemocyanin from Marine Products: Structure, Functions, Its Implications for the Food Industry and Beyond. Int. J. Biol. Macromol. 2024, 269, 132041.
- 9.
Kaintz, ; Mauracher, S.G.; Rompel, A. Chapter One Type-3 Copper Proteins Recent Advances on Polyphenol Oxidases. Adv. Protein Chem. Struct. Biol. 2014, 97, 1–35.
- 10.
Belle, Catechol Oxidase and Tyrosinase. in Encyclopedia of Metalloproteins; Springer: New York, NY, USA, 2013; pp. 574–579.
- 11.
Bijelic, ; Rompel, A.; Belle, C. From Enzymes to Synthetic Models. In Bioinspired Chemistry, Series on Chemistry, Energy and the Environment; Kadish, K., Guilard, R., Eds.; World Scientific: Singapore, 2019; pp. 155–183.
- 12.
Pretzler, ; Rompel, A. Tyrosinases: A Family of Copper-Containing Metalloenzymes. ChemTexts 2024, 10, 12.
- 13.
Yamazaki, -I.; Itoh, S. Kinetic Evaluation of Phenolase Activity of Tyrosinase Using Simplified Catalytic Reaction System. J. Am. Chem. Soc. 2003, 125, 13034–13035.
- 14.
Molitor, ; Mauracher, S.G.; Rompel, A. Aurone Synthase Is a Catechol Oxidase with Hydroxylase Activity and Provides Insights into the Mechanism of Plant Polyphenol Oxidases. Proc. Natl. Acad. Sci. USA 2016, 113, E1806–E1815.
- 15.
Gerdemann, ; Eicken, C.; Krebs, B. The Crystal Structure of Catechol Oxidase: New Insight into the Function of Type-3 Copper Proteins. Acc. Chem. Res. 2002, 35, 183–191.
- 16.
Kitajima, ; Fujisawa, K.; Morooka, Y.; et al. μ-η2:η2-Peroxo Binuclear Copper Complex, [Cu(HB(3,5-(Me2CH)2pz)3)]2(O2). J. Am. Chem. Soc. 1989, 111, 8975–8976.
- 17.
Magnus, A.; Hazes, B.; Ton-That, H.; et al. Crystallographic Analysis of Oxygenated and Deoxygenated States of Arthropod Hemocyanin Shows Unusual Differences. Proteins Struct. Funct. Bioinform. 1994, 19, 302–309.
- 18.
Matoba, ; Kumagai, T.; Yamamoto, A.; et al. Crystallographic Evidence That the Dinuclear Copper Center of Tyrosinase Is Flexible during Catalysis. J. Biol. Chem. 2006, 281, 8981–8990.
- 19.
Fujieda, ; Umakoshi, K.; Ochi, Y.; et al. Copper-Oxygen Dynamics in the Tyrosinase Mechanism. Angew. Chem. Int. Ed. 2020, 59, 13385–13390.
- 20.
Butler, J.; Day, A.W. Fungal Melanins: A Review. Can. J. Microbiol. 1998, 44, 1115–1136.
- 21.
Choudhury, ; Ghosh, D. Elucidating the Structure of Melanin and Its Structure-Property Correlation. Acc. Chem. Res. 2025, 58, 1509–1518.
- 22.
Napolitano, ; Panzella, L.; Leone, L.; et al. Red Hair Benzothiazines and Benzothiazoles: Mutation-Inspired Chemistry in the Quest for Functionality. Acc. Chem. Res. 2013, 46, 519–528.
- 23.
Zucca, A.; Giaveri, G.; Gallorini, M.; et al. The Neuromelanin of Human Substantia Nigra: Physiological and Pathogenic Aspects. Pigm. Cell Mel. Res. 2004, 17, 610–617.
- 24.
d’Ischia, ; Wakamatsu, K.; Napolitano, A.; et al. Melanins and Melanogenesis: Methods, Standards, Protocols. Pigm. Cell Mel. Res. 2013, 26, 616–633.
- 25.
d’Ischia, ; Wakamatsu, K.; Cicoira, F.; et al. Melanins and Melanogenesis: From Pigment Cells to Human Health and Technological Applications. Pigm. Cell Mel. Res. 2015, 28, 520–544.
- 26.
Hong, ; Simon, J.D. Current Understanding of the Binding Sites, Capacity, Affinity, and Biological Significance of Metals in Melanin. J. Phys. Chem. B 2007, 111, 7938–7947.
- 27.
Chatelain, ; Gasparini, J.; Jacquin, L.; et al. The Adaptive Function of Melanin-Based Plumage Coloration to Trace Metals. Biol. Lett. 2014, 10, 20140164.
- 28.
McGraw, J. Melanins, Metals, and Mate Quality. Oikos 2003, 102, 402–406.
- 29.
Solano, New Insights into the Active Site Structure and Catalytic Mechanism of Tyrosinase and Its Related Proteins. Pigm. Cell Mel. Res. 2009, 22, 750–760.
- 30.
Lai, ; Wichers, H.J.; Soler-López, M.; et al. Structure and Function of Human Tyrosinase and Tyrosinase-Related Proteins. Chemistry 2018, 24, 47–55.
- 31.
Tsukamoto, K.; Jackson, I.J.; Urabe, K.; et al. A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome EMBO J. 1992, 11, 519–526.
- 32.
Gautron, ; Migault, M.; Bachelot, L.; et al. Human TYRP1: Two Functions for a Single Gene? Pigm. Cell Mel. Res. 2021, 34, 836–852.
- 33.
Lai, ; Wichers, H.J.; Soler-López, M.; et al. Structure of Human Tyrosinase Related Protein 1 Reveals a Binuclear Zinc Active Site Important for Melanogenesis. Angew. Chem. Int. Ed. 2017, 56, 9812–9815.
- 34.
Faure, ; Ng, Y.M.; Belle, C.; et al. Interactions of Phenylalanine Derivatives with Human Tyrosinase: Lessons from Experimental and Theoretical Studies. ChemBioChem 2024, 25, e202400235.
- 35.
Dolinska, B.; Wingfield, P.T.; Young, K.L.; et al. The TYRP1-mediated Protection of Human Tyrosinase Activity Does Not Involve Stable Interactions of Tyrosinase Domains. Pigm. Cell Mel. Res. 2019, 32, 753–765.
- 36.
Ishikawa, ; Kawase, I.; Ishii, F. Combination of Amino Acids Reduces Pigmentation in B16F0 Melanoma Cells. Biol. Pharm. Bull. 2007, 30, 677–681.
- 37.
Petris, M.J.; Strausak, D.; Mercer, J.F.B. The Menkes copper transporter is required for the activation of Hum. Mol. Genet. 2000, 9, 2845–2851.
- 38.
Wagatsuma, T.; Suzuki, E.; Shiotsu, M.; et al. Pigmentation and TYRP1 expression are mediated by zinc through the early secretory pathway-resident ZNT Commun. Biol. 2023, 6, 403.
- 39.
Solano, On the metal cofactor in the tyrosinase family. Int. J. Mol. Sci. 2018, 19, 633.
- 40.
Tepper, W.J.W.; Lonardi, E.; Bubacco, L.; et al. Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd: Chichester, UK, 2013.
- 41.
Solomon, I.; Sundaram, U.M.; Machonkin, T.E. Multicopper Oxidases and Oxygenases. Chem. Rev. 1996, 96, 2563–2606.
- 42.
Klabunde, ; Eicken, C.; Sacchettini, J.C.; et al. Crystal Structure of a Plant Catechol Oxidase Containing a Dicopper Center. Nat. Struct. Mol. Biol. 1998, 5, 1084–1090.
- 43.
Prexler, M.; Frassek, M.; Moerschbacher, B.M.; et al. Catechol Oxidase versus Tyrosinase Classification Revisited by Site-Directed Mutagenesis Studies. Angew. Chem. Int. Ed. 2019, 58, 8757–8761.
- 44.
Volbeda, ; Hol, W.G.J. Crystal Structure of Hexamerici Haemocyanin from Panulirus Interruptus Refined at 3.2 Å Resolution. J. Mol. Biol. 1989, 209, 249–279.
- 45.
Matoba, ; Kihara, S.; Muraki, Y.; et al. Activation Mechanism of the Streptomyces Tyrosinase Assisted by the Caddie Protein. Biochemistry 2017, 56, 5593–5603.
- 46.
Fernández-Díaz, ; Roldán-Martín, L.; Sodupe, M.; et al. BioBrigit, a Hybrid Machine Learning and Knowledge-Based Approach to Model Metal Pathways in Proteins: Application to a Dicopper Tyrosinase. ACS Omega 2025, 10, 24412–24421.
- 47.
Sendovski, ; Kanteev, M.; Ben-Yosef, V.S.; et al. First Structures of an Active Bacterial Tyrosinase Reveal Copper Plasticity. J. Mol. Biol. 2011, 405, 227–237.
- 48.
Fekry, ; Dave, K.K.; Badgujar, D.; et al. The Crystal Structure of Tyrosinase from Verrucomicrobium spinosum Reveals It to Be an Atypical Bacterial Tyrosinase. Biomolecules 2023, 13, 1360.
- 49.
Fujieda, ; Yabuta, S.; Ikeda, T.; et al. Crystal Structures of Copper-Depleted and Copper-Bound Fungal pro-Tyrosinase: Insights into Endogenous Cysteine-Dependent Copper Incorporation. J. Biol. Chem. 2013, 288, 22128–22140.
- 50.
Ismaya, T.; Rozeboom, H.J.; Weijn, A.; et al. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 2011, 50, 5477–5486.
- 51.
Bijelic, ; Pretzler, M.; Molitor, C.; et al. The Structure of a Plant Tyrosinase from Walnut Leaves Reveals the Importance of “Substrate-Guiding Residues” for Enzymatic Specificity. Angew. Chem. Int. Ed. 2015, 54, 14677–14680.
- 52.
Li, ; Wang, Y.; Jiang, H.; et al. Crystal Structure of Manduca sexta Prophenoloxidase Provides Insights into the Mechanism of Type-3 Copper Enzymes. Proc. Natl. Acad. Sci. USA 2009, 106, 17002–17006.
- 53.
Masuda, ; Momoji, K.; Hirata, T.; et al. The Crystal Structure of a Crustacean Prophenoloxidase Provides a Clue to Understanding the Functionality of the Type-3 Copper Proteins. FEBS J. 2014, 281, 2659–2673.
- 54.
Deeth, J.; Diedrich, C. Structural and Mechanistic Insights into the Oxy Form of Tyrosinase from Molecular Dynamics Simulations. J. Biol. Inorg. Chem. 2010, 15, 117–129.
- 55.
Mauracher, G.; Molitor, C.; Al-Oweini, R.; et al. Latent and Active abPPO4 Mushroom Tyrosinase Cocrystallized with Hexatungstotellurate(VI) in a Single Crystal. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 2301–2315.
- 56.
Pretzler, ; Bijelic, A.; Rompel, A. Heterologous Expression and Characterization of Functional Mushroom Tyrosinase (AbPPO4). Sci. Rep. 2017, 7, 1–10.
- 57.
Addison, A.W.; Rao, T.N.; Reedijk, J.; et al. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) J. Chem. Soc. Dalton Trans. 1984, 1349–1356.
- 58.
Toay, ; Sergeev, Y.V. Genetic Mutations Disrupt the Coordinated Mode of Tyrosinase’s Intra-melanosomal Domain. Protein Sci. 2025, 34, e70209.
- 59.
Lai, ; Soler-Lòpez, M.; Wichers, H.J.; et al. Large-Scale Recombinant Expression and Purification of Human Tyrosinase Suitable for Structural Studies. PLoS ONE 2016, 11, e0161697.
- 60.
Favre, ; Daina, A.; Carrupt, P.-A.; et al. Modeling the Met Form of Human Tyrosinase: A Refined and Hydrated Pocket for Antagonist Design. Chem. Biol. Drug Des. 2014, 84, 206–215.
- 61.
Nokinsee, ; Shank, L.; Lee, V.S.; et al. Estimation of Inhibitory Effect against Tyrosinase Activity through Homology Modeling and Molecular Docking. Enzym. Res. 2015, 2015, 262364.
- 62.
Jumper, ; Evans, R.; Pritzel, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589.
- 63.
Aguilera, ; McDougall, C.; Degnan, B.M. Origin, Evolution and Classification of Type-3 Copper Proteins: Lineage-Specific Gene Expansions and Losses across the Metazoa. BMC Evol. Biol. 2013, 13, 96.
- 64.
Solem, ; Tuczek, F.; Decker, H. Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference. Angew. Chem. Int. Ed. 2016, 55, 2884–2888.
- 65.
Decker, ; Solem, E.; Tuczek, F. Are Glutamate and Asparagine Necessary for Tyrosinase Activity of Type-3 Copper Proteins? Inorg. Chim. Acta 2018, 481, 32–37.
- 66.
Goldfeder, ; Isaschar-Ovdat, S.; Fishman, A. Determination of Tyrosinase Substrate-Binding Modes Reveals Mechanistic Differences between Type-3 Copper Proteins. Nat. Commun. 2014, 5, 4505.
- 67.
Kampatsikas, I.; Bijelic, A.; Pretzler, M.; Rompel, A. Three recombinantly expressed apple tyrosinases suggest the amino acids responsible for mono- versus diphenolase activity in plant polyphenol Sci. Rep. 2017, 7, 8860.
- 68.
Zou, ; Huang, W.; Zhao, G.; et al. Determination of the Bridging Ligand in the Active Site of Tyrosinase. Molecules 2017, 22, 1836–1847.
- 69.
Matoba, ; Yoshitsu, H.; Jeon, H.-J.; et al. Crystal Structure of the met2-form of the Copper-Bound Tyrosinase in Complex with a Caddie Protein from Streptomyces castaneoglobisporus obtained by Soaking in Cupric Sulfate Solution for 80 Hours. Available online: https://www.wwpdb.org/pdb?id=pdb_00002zmy (accessed on 21 April 2008).
- 70.
Bubacco, ; Spinazze, R.; della Longa, S.; et al. X-Ray Absorption Analysis of the Active Site of Streptomyces Antibioticus Tyrosinase upon Binding of Transition State Analogue Inhibitors. Arch. Biochem. Biophys. 2007, 465, 320–327.
- 71.
Cooksey, J.; Garratt, P.J.; Land, E.J.; et al. Evidence of the Indirect Formation of the Catecholic Intermediate Substrate Responsible for the Autoactivation Kinetics of Tyrosinase. J. Biol. Chem. 1997, 272, 26226–26235.
- 72.
Land, J.; Ramsden, C.A.; Riley, P.A. Tyrosinase Autoactivation and the Chemistry of Ortho-Quinone Amines. Acc. Chem. Res. 2003, 36, 300–308.
- 73.
Kitajima, ; Fujisawa, K.; Fujimoto, C.; et al. A New Model for Molecular oxygen Binding in Hemocyanin. Synthesis, Characterization, and Molecular Structure of the μ-η2:η2-Peroxo Dinuclear Copper(II) Complexes, [Cu(HB(3,5-R2pz)3)]2(O2) (R = Isopropyl and Ph). J. Am. Chem. Soc. 1992, 114, 1277–1291.
- 74.
Halfen, A.; Mahapatra, S.; Wilkinson, E.C.; et al. Reversible Cleavage and Formation of the Molecular oxygen O-O Bond within a Dicopper Complex. Science 1996, 271, 1397–1400.
- 75.
Karlin, D.; Kaderli, S.; Zuberbühler, A.D. Kinetics and Thermodynamics of Copper(I)/Molecular oxygen Interaction. Acc. Chem. Res. 1997, 30, 139–147.
- 76.
Liang, -C.; Dahan, M.; Karlin, K.D. Molecular oxygen-Activating Bio-Inorganic Model Complexes. Curr. Op. Chem. Biol. 1999, 3, 168–175.
- 77.
Mirica, M.; Ottenwaelder, X.; Stack, T.D.P. Structure and Spectroscopy of Copper-Molecular oxygen Complexes. Chem. Rev. 2004, 104, 1013–1045.
- 78.
Rolff, ; Decker, H.; Tuczek, F. Copper-O2 Reactivity of Tyrosinase Models towards External Monophenolic Substrates: Molecular Mechanism and Comparison with the Enzyme. Chem. Soc. Rev. 2011, 40, 4077–22.
- 79.
Keown, ; Gary, J.B.; Stack, T.D.P. High-Valent Copper in Biomimetic and Biological Oxidations. J. Biol. Inorg. Chem. 2017, 22, 289–305.
- 80.
Itoh, Developing Mononuclear Copper-Active-Oxygen Complexes Relevant to Reactive Intermediates of Biological Oxidation Reactions. Acc. Chem. Res. 2015, 48, 2066–2074.
- 81.
Elwell, E.; Gagnon, N.L.; Neisen, B.D.; et al. Copper-Oxygen Complexes Revisited: Structures, Spectroscopy, and Reactivity. Chem. Rev. 2017, 117, 2059–2107.
- 82.
Quist, A.; Diaz, D.E.; Liu, J.J.; et al. Activation of Molecular oxygen by Copper Metalloproteins and Insights from Model Complexes. J. Biol. Inorg. Chem. 2017, 22, 253–288.
- 83.
De Tovar, ; Leblay, R.; Wang, Y.; et al. Copper-Oxygen Adducts: New Trends in Characterization and Properties towards C-H Activation. Chem. Sci. 2024, 15, 10308–10349.
- 84.
Nasir, S.; Cohen, B.I.; Karlin, K.D. Mechanism of Aromatic Hydroxylation in a Copper Monooxygenase Model System. 1,2-Methyl Migrations and the NIH Shift in Copper Chemistry. J. Am. Chem. Soc. 1992, 114, 2482–2494.
- 85.
Kock, ; Engesser, T.A.; Jurgeleit, R.; et al. Monooxygenation of Phenols by Small-molecule Models of Tyrosinase: Correlations Between Structure and Catalytic Activity. In Copper Bioinorganic Chemistry, From Health to Bioinspired Catalysis; Simaan, A.J., Réglier, M., Eds.; World Scientific: Singapore, 2023; pp. 123–149.
- 86.
Gupta, ; Mukerherjee, R. Modeling Tyrosinase Activity Using m-Xylyl-Based Ligands: Ring Hydroxylation, Reactivity, and Theoretical Investigation. In Copper Bioinorganic Chemistry, From Health to Bioinspired Catalysis; Simaan, A.J., Réglier, M., Eds.; World Scientific: Singapore, 2023; pp. 81–118.
- 87.
Réglier, ; Jorand, C.; Waegell, B. Binuclear Copper Complex Model of Tyrosinase. Chem. Commun. 1990, 1752–1755.
- 88.
Casella, ; Gullotti, M.; Radaelli, R.; et al. A Tyrosinase Model System. Phenol Ortho -Hydroxylation by a Binuclear Three-Coordinate Copper(I) Complex and Dioxygen. Chem. Commun. 1991, 1611–1612.
- 89.
Rolff, ; Schottenheim, J.; Tuczek, F. Monooxygenation of External Phenolic Substrates in Small-Molecule Dicopper Complexes: Implications on the Reaction Mechanism of Tyrosinase. J. Coord. Chem. 2010, 63, 2382–2399.
- 90.
Rolff, ; Tuczek, F. The First Catalytic Tyrosinase Model System Based on a Mononuclear Copper(I) Complex: Kinetics and Mechanism. Angew. Chem. Int. Ed. 2010, 49, 6438–6442.
- 91.
Presti, L.; Perrone, M.L.; Santagostini, L.; et al. A Stereoselective Tyrosinase Model Compound Derived from an m-Xylyl-l histidine Ligand. Inorg. Chem. 2019, 58, 7335–7344.
- 92.
Itoh, ; Kumei, H.; Taki, M.; et al. Oxygenation of Phenols to Catechols by A (μ-η2:η2-Peroxo)Dicopper(II) Complex: Mechanistic Insight into the Phenolase Activity of Tyrosinase. J. Am. Chem. Soc. 2001, 123, 6708–6709.
- 93.
Herres-Pawlis, ; Verma, P.; Haase, R.; et al. Phenolate Hydroxylation in a Bis(μ-Oxo)Dicopper(III) Complex: Lessons from the Guanidine/Amine Series. J. Am. Chem. Soc. 2009, 131, 1154–1169.
- 94.
Deri, ; Kanteev, M.; Goldfeder, M.; et al. The Unravelling of the Complex Pattern of Tyrosinase Inhibition. Sci. Rep. 2016, 6, 34993.
- 95.
Decker, ; Schweikardt, T.; Tuczek, F. The First Crystal Structure of Tyrosinase: All Questions Answered? Angew. Chem. Int. Ed. 2006, 45, 4546–4550.
- 96.
Citek, ; Lyons, C.T.; Wasinger, E.C.; et al. Self-Assembly of the Oxy-Tyrosinase Core and the Fundamental Components of Phenolic Hydroxylation. Nat. Chem. 2012, 4, 317–322.
- 97.
Mirica, M.; Rudd, D.J.; Vance, M.A.; et al. μ-η2:η2-Peroxodicopper(II) Complex with a Secondary Diamine Ligand: A Functional Model of Tyrosinase. J. Am. Chem. Soc. 2006, 128, 2654–2665.
- 98.
Holt, T.O.; Vance, M.A.; Mirica, L.M.; et al. Reaction Coordinate of a Functional Model of Tyrosinase: Spectroscopic and Computational Characterization. J. Am. Chem. Soc. 2009, 131, 6421–6438.
- 99.
Qayyum, F.; Sarangi, R.; Fujisawa, K.; et al. L-Edge X-Ray Absorption Spectroscopy and DFT Calculations on Cu2O2 Species: Direct Electrophilic Aromatic Attack by Side-on Peroxo Bridged Dicopper(II) Complexes. J. Am. Chem. Soc. 2013, 135, 17417–17431.
- 100.
Hoffmann, ; Citek, C.; Binder, S.; et al. Catalytic Phenol Hydroxylation with Molecular oxygen: Extension of the Tyrosinase Mechanism beyond the Protein Matrix. Angew. Chem. Int. Ed. 2013, 52, 5398–5401.
- 101.
Mirica, M.; Vance, M.A.; Rudd, D.J.; et al. Tyrosinase Reactivity in a Model Complex: An Alternative Hydroxylation Mechanism. Science 2005, 308, 1890–1892.
- 102.
Company, ; Palavicini, S.; Garcia-Bosch, I.; et al. Tyrosinase-like Reactivity in a Cu2(III)(μ-O)2 Species. Chem. Eur. J. 2008, 14, 3535–3538.
- 103.
Large, A.G.; Keown, W.; Gary, J.B.; et al. Imidazolate-Stabilized Cu(III): Molecular oxygen to Oxides at Type-3 Copper Sites. Angew. Chem. Int. Ed. 2024, 64, e202416967.
- 104.
Chiang, ; Keown, W.; Citek, C.; et al. Simplest Monodentate Imidazole Stabilization of the oxy-Tyrosinase Cu2O2 Core: Phenolate Hydroxylation through a CuIII Intermediate. Angew. Chem. Int. Ed. 2016, 128, 10609–10613.
- 105.
Kipouros, ; Stańczak, A.; Ginsbach, J.W.; et al. Elucidation of the Tyrosinase/O2/Monophenol Ternary Intermediate That Dictates the Monooxygenation Mechanism in Melanin Biosynthesis. Proc. Natl. Acad. Sci. USA 2022, 119, e2205619119.
- 106.
Kipouros, ; Solomon, E.I. New Mechanistic Insights into Coupled Binuclear Copper Monooxygenases from the Recent Elucidation of the Ternary Intermediate of Tyrosinase. FEBS Lett. 2023, 597, 65–78.
- 107.
Kipouros, ; Stańczak, A.; Culka, M.; et al. Evidence for H-Bonding Interactions to the μ-η2:η2-Peroxide of Oxy-Tyrosinase That Activate Its Coupled Binuclear Copper Site. Chem. Commun. 2022, 58, 3913–3916.
- 108.
Kipouros, ; Sańczak, A.; Dunietz, E.M.; et al. Experimental Evidence and Mechanistic Description of the Phenolic H Transfer to the Cu2O2 Active Site of Oxy-Tyrosinase. J. Am. Chem. Soc. 2023, 145, 22866–22870.
- 109.
Stańczak, ; Kipouros, I.; Eminger, P.; et al. Coupled Binuclear Copper Sites in Biology: An Experimentally-Calibrated Computational Perspective. Coord. Chem. Rev. 2025, 525, 216301.
- 110.
Tudela, ; Lozano, J.A.; Garcia-Canovas, F. L-Mimosine a Slow-Binding Inhibitor of Mushroom Tyrosinase. Phytochemistry 1987, 26, 917–919.
- 111.
Chen, S.; Wei, C.; Rolle, R.S.; et al. Inhibitory Effect of Kojic Acid on Some Plant and Crustacean Polyphenol Oxidases. J. Agr. Food Chem. 1991, 39, 1396–1401.
- 112.
Espín, C.; Wichers, H.J. Slow-Binding Inhibition of Mushroom (Agaricus bisporus) Tyrosinase Isoforms by Tropolone. J. Agr. Food Chem. 1999, 47, 2638–2644.
- 113.
Peyroux, ; Ghattas, W.; Hardré, R.; et al. Binding of 2-hydroxypyridine-N-oxide on dicopper(II) centers: Insights into tyrosinase inhibition mechanism by transition-state analogs. Inorg. Chem. 2009, 48, 10874–10876.
- 114.
Kahn, V.; Andrawis, A. Inhibition of mushroom tyrosinase by Phytochemistry 1985, 24, 905–908.
- 115.
Bubacco, L.; Van Gastel, M.; Groenen, E.J.J.; et al. Spectroscopic characterization of the electronic changes in the active site of Streptomyces antibioticus tyrosinase upon binding of transition state analogue J. Biol. Chem. 2003, 278, 7381–7389.
- 116.
van Gastel, M.; Bubacco, L.; Groenen, E.J.J.; et al. EPR study of the dinuclear active copper site of tyrosinase from Streptomyces antibioticus. FEBS Lett. 2000, 474, 228–232.
- 117.
Benfatto, M.; Della Longa, S.; Pace, E.; et al. MXAN: A new program for ab-initio structural quantitative analysis of XANES Comput. Phys. Commun. 2021, 265, 107992.
- 118.
Bochot, ; Gouron, A.; Bubacco, L.; et al. Probing Kojic Acid Binding to Tyrosinase Enzyme: Insights from a Model Complex and QM/MM Calculations. Chem. Comm. 2014, 50, 308–310.
- 119.
Faure, C.; d’Hardemare, A.M.; Jamet, H.; et al. Transition State Analogue Molecules as Mechanistic Tools and Inhibitors of In Copper Bioinorganic Chemistry, From Health to Bioinspired Catalysis; Simaan, A.J., Réglier, M., Eds.; World Scientific: Singapore, 2023; pp. 45–80.
- 120.
Orio, ; Bochot, C.; Dubois, C.; et al. The Versatile Binding Mode of Transition-State Analogue Inhibitors of Tyrosinase towards Dicopper(II) Model Complexes: Experimental and Theoretical Investigations. Chem. Eur. J. 2011, 17, 13482–13494.
- 121.
Bochot, ; Favre, E.; Dubois, C.; et al. Unsymmetrical Binding Modes of the HOPNO Inhibitor of Tyrosinase: From Model Complexes to the Enzyme. Chem. Eur. J. 2013, 19, 3655–3664.
- 122.
Bastonini, ; Kovacs, D.; Picardo, M. Skin Pigmentation and Pigmentary Disorders: Focus on Epidermal/Dermal Cross-Talk. Ann. Dermatol. 2016, 28, 279–289.
- 123.
Ali, ; Niaimi, F.A. Pathogenesis of Melasma Explained. Int. J. Dermatol. 2025, 64, 1201–1212.
- 124.
Mahrous, H.; Abdel-dayem, S.I.A.; Adel, I.M.; et al. Efficacy of Natural Products as Tyrosinase Inhibitors in Hyperpigmentation Therapy: Anti-Melanogenic or Anti-Browning Effects. Chem. Biodivers. 2025, 22, e202403324.
- 125.
Wang, ; Gao, X.; Zhang, L. Recent Global Patterns in Skin Cancer Incidence, Mortality, and Prevalence. Chin. Med. J. 2025, 138, 185–192.
- 126.
Boyle, L.; Boyle, J.L.; Haupt, H.M.; et al. Tyrosinase Expression in Malignant Melanoma, Desmoplastic Melanoma, and Peripheral Nerve Tumors. Arch. Pathol. Lab. Med. 2002, 126, 816–822.
- 127.
Krasowska, ; Małek, A.; Kurzepa, J.; et al. Melanin—The Éminence Grise of Melanoma and Parkinson’s Disease Development. Cancers 2023, 15, 5541.
- 128.
Weinstein, ; Leininger, J.; Hamby, C.; et al. Diagnostic and Prognostic Biomarkers in Melanoma. J. Clin. Aesthet. Dermatol. 2014, 7, 13–24.
- 129.
Ankeny, J.S.; Labadie, B.; Luke, J.; et al. Review of diagnostic, prognostic, and predictive biomarkers in Clin. Exp. Metastasis 2018, 35, 487–493.
- 130.
Buitrago, ; Hardre, R.; Haudecoeur, R.; et al. Are Human Tyrosinase and Related Proteins Suitable Targets for Melanoma Therapy? Curr. Top. Med. Chem. 2016, 16, 3033–3047.
- 131.
Wang, ; Jiang, R.; Xiong, B.; et al. Clinical Investigation of Tyrosinase Inhibitors: Past, Present, and Future. Drug Dev. Res. 2025, 86, e70113.
- 132.
Ruzzi, ; Riccardo, F.; Conti, L.; et al. Cancer Vaccines: Target Antigens, Vaccine Platforms and Preclinical Models. Mol. Asp. Med. 2025, 101, 101324.
- 133.
Rezaei, ; Davoudian, E.; Khalili, S.; et al. Strategies in DNA Vaccine for Melanoma Cancer. Pigm. Cell Mel. Res. 2021, 34, 869–891.
- 134.
Vargas, J.; Sittadjody, S.; Thangasamy, T.; et al. Exploiting Tyrosinase Expression and Activity in Melanocytic Tumors: Quercetin and the Central Role of P53. Integr. Cancer Ther. 2011, 10, 328–340.
- 135.
Jawaid, ; Khan, T.H.; Osborn, H.M.I.; et al. Tyrosinase Activated Melanoma Prodrugs. Anti Cancer Agents Med. Chem. 2009, 9, 717–727.
- 136.
Cabaço, C.; Tomás, A.; Pojo, M.; et al. The Dark Side of Melanin Secretion in Cutaneous Melanoma Aggressiveness. Front. Oncol. 2022, 12, 887366.
- 137.
Slominski, M.; Sarna, T.; Płonka, P.M.; et al. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front. Oncol. 2022, 12, 842496.
- 138.
Rendon, ; Horwitz, S. Topical Treatment of Hyperpigmentation Disorders. Ann. Dermatol. Venereol. 2012, 139, S153–S158.
- 139.
Desai, Postinflammatory Hyperpigmentation and Other Disorders of Hyperpigmentation. In Treatment of Skin Disease: Comprehensive Therapeutic Strategies, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp 658–661.
- 140.
Akakpo, -S.; Mouhari-Toure, A.; Saka, B.; et al. Systemic Complications during Voluntary Cosmetic Depigmentation among Women in Togo: A Case-Control Study. Ann. Dermatol. Venereol. 2016, 143, 197–201.
- 141.
Mohdin, A. How the Colonial Legacy has Created a Toxic Beauty Available online: https://www.theguardian.com/world/2025/aug/14/thursday-briefing-how-the-colonial-legacy-has-created-a-toxic-beauty-industry?CMP=share_btn_url (accessed on 14 August 2025).
- 142.
Cadungog, G.E.; Yee, J.R.D.; Sucgang, R.J. Mercury in Online Skin-Lightening Cosmetics: A Health Risk Assessment of Products from Selected Asian Countries. Food Chem. Toxicol. 2025, 204, 115676.
- 143.
Loizzo, R.; Tundis, R.; Menichini, F. Natural and Synthetic Tyrosinase Inhibitors as Antibrowning Agents: An Update. Compr. Rev. Food Sci. Food Saf. 2012, 11, 378–398.
- 144.
Gębalski, J.; Graczyk, F.; Załuski, D. Paving the way towards effective plant-based inhibitors of hyaluronidase and tyrosinase: A critical review on a structure-activity J. Enzym. Inhib. Med. Chem. 2022, 37, 1120–1195.
- 145.
Vaezi, Structure and inhibition mechanism of some synthetic compounds and phenolic derivatives as tyrosinase inhibitors: Review and new insight. J. Biomol. Struct. Dyn. 2023, 41, 4798–4810.
- 146.
Peng, ; Wang, G.; Zeng, Q.-H.; et al. A Systematic Review of Synthetic Tyrosinase Inhibitors and Their Structure-Activity Relationship. Crit. Rev. Food Sci. 2022, 62, 1–42.
- 147.
Obaid, J.; Mughal, E.U.; Naeem, N.; et al. Natural and Synthetic Flavonoid Derivatives as New Potential Tyrosinase Inhibitors: A Systematic Review. RSC Adv. 2021, 11, 22159–22198.
- 148.
Riaz, ; Batool, S.; Zucca, P.; et al. Plants as a Promising Reservoir of Tyrosinase Inhibitors. Mini Rev. Org. Chem. 2021, 18, 808–828.
- 149.
Zhang, ; Bian, G.; Kang, P.; et al. Recent Advance in the Discovery of Tyrosinase Inhibitors from Natural Sources via Separation Methods. J. Enzym. Inhib. Med. Chem. 2021, 36, 2104–2117.
- 150.
Bonesi, ; Xiao, J.; Tundis, R.; et al. Advances in the Tyrosinase Inhibitors from Plant Source. Curr. Med. Chem. 2019, 26, 3279–3299.
- 151.
Hariri, ; Saeedi, M.; Akbarzadeh, T. Naturally occurring and synthetic peptides: Efficient tyrosinase inhibitors. J. Pept. Sci. 2021, 27, e3329.
- 152.
Chen, Y.; Adamek, R.N.; Dick, B.L.; et al. Targeting Metalloenzymes for Therapeutic Intervention. Chem. Rev. 2018, 119, 1323–1455.
- 153.
Jung, J.; Kim, H.J.; Park, H.S.; et al. Highly Potent Anti-Melanogenic Effect of 2-Thiobenzothiazole Derivatives through Nanomolar Tyrosinase Activity Inhibition. Bioorg. Chem. 2024, 150, 107586.
- 154.
Hałdys, ; Latajka, R. Thiosemicarbazones with Tyrosinase Inhibitory Activity. MedChemComm 2019, 10, 378–389.
- 155.
Beaumet, ; Lazinski, L.M.; Maresca, M.; et al. Tyrosinase Inhibition and Antimelanogenic Effects of Resorcinol-Containing Compounds. ChemMedChem 2024, 19, e202400314.
- 156.
Fogal, ; Carotti, M.; Giaretta, L.; et al. Human Tyrosinase Produced in Insect Cells: A Landmark for the Screening of New Drugs Addressing Its Activity. Mol. Biotechnol. 2014, 57, 45–57.
- 157.
Nesterov, ; Zhao, J.; Minter, D.; et al. 1-(2,4-Dihydroxyphenyl)-3-(2,4-Dimethoxy-3-Methylphenyl)Propane, a Novel Tyrosinase Inhibitor with Strong Depigmenting Effects. Chem. Pharm. Bulletin. 2008, 56, 1292–1296.
- 158.
Haudecoeur, ; Carotti, M.; Gouron, A.; et al. 2-Hydroxypyridine-N-Oxide-Embedded Aurones as Potent Human Tyrosinase Inhibitors. ACS Med. Chem. Lett. 2017, 8, 55–60.
- 159.
Lee, Y.S.; Park, J.H.; Kim, M.H.; et al. Synthesis of tyrosinase inhibitory kojic acid Arch. Pharm. 2006, 339, 111–114.
- 160.
Buitrago, ; Faure, C.; Challali, L.; et al. Ditopic Chelators of Dicopper Centers for Enhanced Tyrosinases Inhibition. Chem. Eur. J. 2021, 27, 4384–4393.
- 161.
Okombi, ; Rival, D.; Bonnet, S.; et al. Discovery of Benzylidenebenzofuran-3(2H)-One (Aurones) as Inhibitors of Tyrosinase Derived from Human Melanocytes. J. Med. Chem. 2006, 49, 329–333.
- 162.
Saroha, ; Kumar, G.; Kumar, S. Aurones as Versatile Enzyme Inhibitors: Recent Advancements, Structural Insights, Mechanisms, and Therapeutic Potential. Eur. J. Med. Chem. Rep. 2025, 15, 100280.
- 163.
Dubois, ; Haudecoeur, R.; Orio, M.; et al. Versatile Effects of Aurone Structure on Mushroom Tyrosinase Activity. ChemBioChem 2012, 13, 559–565.
- 164.
Marková, ; Kotik, M.; Křenková, A.; et al. Recombinant Tyrosinase from Polyporus arcularius: Overproduction in Escherichia Coli, Characterization, and Use in a Study of Aurones as Tyrosinase Effectors. J. Agr. Food Chem. 2016, 64, 2925–2931.
- 165.
Beaumet, ; Lazinski, L.M.; Maresca, M.; et al. Catechol-Mimicking Transition-State Analogues as Non-Oxidizable Inhibitors of Tyrosinases. Eur. J. Med. Chem. 2023, 259, 115672.
- 166.
Haudecoeur, ; Gouron, A.; Dubois, C.; et al. Investigation of Binding-Site Homology between Mushroom and Bacterial Tyrosinases by Using Aurones as Effectors. ChemBioChem 2014, 15, 1325–1333.
- 167.
Dubois, La Tyrosinase: Étude de Nouveaux Effecteurs. Ph.D. Thesis, Aix-Marseille Université: Marseille, France, October 2012.
- 168.
Buitrago, ; Faure, C.; Carotti, M.; et al. Exploiting HOPNO-Dicopper Center Interaction to Development of Inhibitors for Human Tyrosinase. Eur. J. Med. Chem. 2023, 248, 115090.
- 169.
Xu, ; Liang, X.; Kim, H.-M.; et al. In Vitro and In Silico Studies of Maculosin as a Melanogenesis and Tyrosinase Inhibitor. Molecules 2025, 30, 860.
- 170.
Ricci, ; Schira, K.; Khettabi, L.; et al. Computational Methods to Analyze and Predict the Binding Mode of Inhibitors Targeting Both Human and Mushroom Tyrosinase. Eur. J. Med. Chem. 2023, 260, 115771.
- 171.
Kang, ; Tong, H.H.Y.; Li, S. Discovery of Potential Tyrosinase Inhibitors via Machine Learning and Molecular Docking with Experimental Validation of Activity and Skin Permeation. ACS Omega 2025, 10, 38922–38932.
- 172.
OréMaldonado, A.; Cuesta, S.A.; Mora, J.R et al. Discovering New Tyrosinase Inhibitors by Using In Silico Modelling, Molecular Docking, and Molecular Dynamics. Pharmaceuticals 2025, 18, 418.
- 173.
Mirabile, S.; Pitasi, G.; Floris, S.; et al. Structure-Based Design and Evaluation of Tyrosinase Inhibitors Targeting Both Human and Mushroom Isozymes. RSC Med. Chem. 2025, 16, 3814–3825.