2511002305
  • Open Access
  • Review

Electrochemical Localized Surface Plasmon Resonance: Review and Theoretical Consideration

  • Andrii Lopatynskyi 1,2,   
  • Petro Demydov 1,   
  • Vitalii Lytvyn 1,   
  • Mariia Khutko 1,   
  • Volodymyr Chegel 1,2,3,*

Received: 01 Oct 2025 | Revised: 03 Nov 2025 | Accepted: 17 Nov 2025 | Published: 27 Nov 2025

Abstract

An overview of the current state of research in the field of electrochemical localized surface plasmon resonance (electrochemical LSPR, ELSPR) is presented. The model based on the Mie scattering theory for spherical particles and the Stern electrical double layer theory were exploited for computer modelling of the influence of parameters of the “gold nanoparticle-electrolyte” system on the extinction spectra and the LSPR position of a gold nanoparticle upon applying an electric potential difference between the nanoparticle and the surrounding electrolyte in the range of −0.3 to +0.6 V. It was shown that the extinction spectra undergo non-linear and mostly non-monotonic shifts in intensity and wavelength depending on the magnitude of the applied potential at all nanoparticle sizes in the radius range of 5–80 nm. It was established that the resulting shift in the LSPR position with changes in potential difference in the range of −0.3 to +0.6 V depends on the size of the nanoparticle, the refractive index of the electrolyte, the concentration of the electrolyte, the potential of zero charge of the nanoparticle in the electrolyte, and the charge of the ion in the electrolyte, and can reach amplitude values from 0.3 nm to 5.6 nm. 

References 

  • 1.
    Tadjeddine, A.; Kolb, D.M.; Kötz, R. The study of single crystal electrode surfaces by surface plasmon excitation. Surf. Sci. 1980, 101, 277–285.
  • 2.
    Gordon Ii, J.G.; Ernst, S. Surface plasmons as a probe of the electrochemical interface. Surf. Sci. 1980, 101, 499–506.
  • 3.
    Pettit, C.M.; Assiongbon, K.A.; Garland, J.E.; et al. Time resolved detection of electrochemical effects by surface plasmon resonance measurements: A simple technique using a large area single cell photodiode. Sens. Actuators B Chem. 2003, 96, 105–113.
  • 4.
    Ung, T.; Giersig, M.; Dunstan, D.; et al. Spectroelectrochemistry of colloidal silver. Langmuir 1997, 13, 1773–1782.
  • 5.
    Templeton, A.C.; Pietron, J.J.; Murray, R.W.; et al. Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters. J. Phys. Chem. B 2000, 104, 564–570.
  • 6.
    Riskin, M.; Basnar, B.; Chegel, V.I.; et al. Switchable surface properties through the electrochemical or biocatalytic generation of Ag0 nanoclusters on monolayer-functionalized electrodes. J. Am. Chem. Soc. 2006, 128, 1253–1260.
  • 7.
    Bhalla, N.; Di Lorenzo, M.; Pula, G.; et al. Protein phosphorylation detection using dual-mode field-effect devices and nanoplasmonic sensors. Sci. Rep. 2015, 5, 8687.
  • 8.
    Li, N.; Lu, Y.; Li, S.; et al. Monitoring the electrochemical responses of neurotransmitters through localized surface plasmon resonance using nanohole array. Biosens. Bioelectron. 2017, 93, 241–249.
  • 9.
    Li, S.; Liu, J.; Lu, Y.; et al. Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection. Biosens. Bioelectron. 2018, 117, 32–39.
  • 10.
    Putzbach, W.; Ronkainen, N.J. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review. Sensors 2013, 13, 4811–4840.
  • 11.
    Berti, F.; Turner, A.P. New Micro- and Nanotechnologies for Electrochemical Biosensor Development. In Biosensor Nanomaterials; Li, S., Singh, J., Banerjee, I.A., Eds.; WILEY-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2011.
  • 12.
    Lim, S.A.; Ahmed, M.U. Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: A review. RSC Adv. 2016, 6, 24995–25014.
  • 13.
    Chikkaveeraiah, B.V.; Bhirde, A.A.; Morgan, N.Y.; et al. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 2012, 6, 6546–6561.
  • 14.
    Iost, R.M.; da Silva, W.C.; Madurro, J.M.; et al. Electrochemical nano(bio)sensors: Advances, diagnosis and monitoring of diseases. Front. Biosci. 2011, 3, 663–689.
  • 15.
    Fusco, G.; Gallo, F.; Tortolini, C.; et al. AuNPs-functionalized PANABA-MWCNTs nanocomposite-based impedimetric immunosensor for 2,4-dichlorophenoxy acetic acid detection. Biosens. Bioelectron. 2017, 93, 52–56.
  • 16.
    Ji, D.; Liu, Z.; Liu, L.; et al. Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes. Biosens. Bioelectron. 2018, 119, 55–62.
  • 17.
    Ledin, P.A.; Jeon, J.W.; Geldmeier, J.A.; et al. Design of hybrid electrochromic materials with large electrical modulation of plasmonic resonances. ACS Appl. Mater. Interfaces 2016, 8, 13064–13075.
  • 18.
    Jeon, J.W.; Ledin, P.A.; Geldmeier, J.A.; et al. Electrically controlled plasmonic behavior of gold nanocube@polyaniline nanostructures: Transparent plasmonic aggregates. Chem. Mater. 2016, 28, 2868–2881.
  • 19.
    Zhou, J.; Panikkanvalappil, S.R.; Kang, S.; et al. Enhanced Electrochemical Dark-Field Scattering Modulation on a Single Hybrid Core–Shell Nanostructure. J. Phys. Chem. C 2019, 123, 28343–28352.
  • 20.
    Zhong, L.; Jiang, Y.; Liow, C.; et al. Highly Sensitive Electro-Plasmonic Switches Based on Fivefold Stellate Polyhedral Gold Nanoparticles. Small 2015, 11, 5395–5401.
  • 21.
    Peng, J.; Jeong, H.H.; Lin, Q.; et al. Scalable electrochromic nanopixels using plasmonics. Sci. Adv. 2019, 5, eaaw2205.
  • 22.
    McMillan, B.G.; Berlouis, L.E.A.; Cruickshank, F.R.; et al. Reflectance and electrolyte electroreflectance from gold nanorod arrays embedded in a porous alumina matrix. J. Electroanal. Chem. 2007, 599, 177–182.
  • 23.
    Montelongo, Y.; Sikdar, D.; Ma, Y.; et al. Electrotunable nanoplasmonic liquid mirror. Nat. Mater. 2017, 16, 1127–1135.
  • 24.
    Habib, A.; Zhu, X.; Can, U.I.; et al. Electro-plasmonic nanoantenna: A nonfluorescent optical probe for ultrasensitive label-free detection of electrophysiological signals. Sci. Adv. 2019, 5, eaav9786.
  • 25.
    Kamat, P.V.; Barazzouk, S.; Hotchandani, S. Electrochemical modulation of fluorophore emission on a nanostructured gold film. Angew. Chem. 2002, 114, 2888–2891.
  • 26.
    Cameron, P.J.; Zhong, X.; Knoll, W. Electrochemically controlled surface plasmon enhanced fluorescence response of surface immobilized CdZnSe quantum dots. J. Phys. Chem. C 2009, 113, 6003–6008.
  • 27.
    Lipovka, A.; Fatkullin, M.; Averkiev, A.; et al. Surface-enhanced Raman spectroscopy and electrochemistry: The ultimate chemical sensing and manipulation combination. Crit. Rev. Anal. Chem. 2024, 54, 110–134.
  • 28.
    Wilson, A.J.; Mohan, V.; Jain, P.K. Mechanistic understanding of plasmon-enhanced electrochemistry. J. Phys. Chem. C 2019, 123, 29360–29369.
  • 29.
    Hoener, B.S.; Kirchner, S.R.; Heiderscheit, T.S.; et al. Plasmonic sensing and control of single-nanoparticle electrochemistry. Chem 2018, 4, 1560–1585.
  • 30.
    Lopatynskyi, A.M.; Lopatynska, O.G.; Guo, L.J.; et al. Localized surface plasmon resonance biosensor—Part I: Theoretical study of sensitivity—Extended Mie approach. IEEE Sens. J. 2010, 11, 361–369.
  • 31.
    Lopatynskyi, A.; Guiver, M.; Chegel, V. Surface plasmon resonance biomolecular recognition nanosystem: Influence of the interfacial electrical potential. J. Nanosci. Nanotechnol. 2014, 14, 6559–6564.
  • 32.
    Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: San Diego, CA, USA 1998; 804p.
  • 33.
    Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370.
  • 34.
    Lide, R.D. Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, USA, 2004; 2616p.
  • 35.
    Fox M. Optical Properties of Solids/M. Fox; Oxford University Press: New York, NY, USA, 2001; 408p.
  • 36.
    Bockris, J.O.; White, R.E.; Conway, B.E. Modern Aspects of Electrochemistry; Kluwer Academic Publishers: New York, NY, USA, 1999; 350p.
  • 37.
    Papoff, F.; Hourahine, B. Geometrical Mie theory for resonances in nanoparticles of any shape. Opt. Express 2011, 19, 21432–21444.
  • 38.
    Sannomiya, T.; Dermutz, H.; Hafner, C.; et al. Electrochemistry on a localized surface plasmon resonance sensor. Langmuir 2010, 26, 7619–7626.
  • 39.
    Zalyubovskiy, S.J.; Bogdanova, M.; Deinega, A.; et al. Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor. JOSA A 2012, 29, 994–1002.
  • 40.
    Lopatynskyi, A.; Lopatynska, O.; Chegel, V. Comparative analysis of response modes for gold nanoparticle biosensor based on localized surface plasmon resonance. Semicond. Phys. Quantum Electron. Optoelectron. 2011, 14, 114–121.
Share this article:
How to Cite
Lopatynskyi, A.; Demydov, P.; Lytvyn, V.; Khutko, M.; Chegel, V. Electrochemical Localized Surface Plasmon Resonance: Review and Theoretical Consideration. Bioelectrochemistry and Biosensors 2025, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.