- 1.
Tadjeddine, A.; Kolb, D.M.; Kötz, R. The study of single crystal electrode surfaces by surface plasmon excitation. Surf. Sci. 1980, 101, 277–285.
- 2.
Gordon Ii, J.G.; Ernst, S. Surface plasmons as a probe of the electrochemical interface. Surf. Sci. 1980, 101, 499–506.
- 3.
Pettit, C.M.; Assiongbon, K.A.; Garland, J.E.; et al. Time resolved detection of electrochemical effects by surface plasmon resonance measurements: A simple technique using a large area single cell photodiode. Sens. Actuators B Chem. 2003, 96, 105–113.
- 4.
Ung, T.; Giersig, M.; Dunstan, D.; et al. Spectroelectrochemistry of colloidal silver. Langmuir 1997, 13, 1773–1782.
- 5.
Templeton, A.C.; Pietron, J.J.; Murray, R.W.; et al. Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters. J. Phys. Chem. B 2000, 104, 564–570.
- 6.
Riskin, M.; Basnar, B.; Chegel, V.I.; et al. Switchable surface properties through the electrochemical or biocatalytic generation of Ag0 nanoclusters on monolayer-functionalized electrodes. J. Am. Chem. Soc. 2006, 128, 1253–1260.
- 7.
Bhalla, N.; Di Lorenzo, M.; Pula, G.; et al. Protein phosphorylation detection using dual-mode field-effect devices and nanoplasmonic sensors. Sci. Rep. 2015, 5, 8687.
- 8.
Li, N.; Lu, Y.; Li, S.; et al. Monitoring the electrochemical responses of neurotransmitters through localized surface plasmon resonance using nanohole array. Biosens. Bioelectron. 2017, 93, 241–249.
- 9.
Li, S.; Liu, J.; Lu, Y.; et al. Mutual promotion of electrochemical-localized surface plasmon resonance on nanochip for sensitive sialic acid detection. Biosens. Bioelectron. 2018, 117, 32–39.
- 10.
Putzbach, W.; Ronkainen, N.J. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review. Sensors 2013, 13, 4811–4840.
- 11.
Berti, F.; Turner, A.P. New Micro- and Nanotechnologies for Electrochemical Biosensor Development. In Biosensor Nanomaterials; Li, S., Singh, J., Banerjee, I.A., Eds.; WILEY-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2011.
- 12.
Lim, S.A.; Ahmed, M.U. Electrochemical immunosensors and their recent nanomaterial-based signal amplification strategies: A review. RSC Adv. 2016, 6, 24995–25014.
- 13.
Chikkaveeraiah, B.V.; Bhirde, A.A.; Morgan, N.Y.; et al. Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 2012, 6, 6546–6561.
- 14.
Iost, R.M.; da Silva, W.C.; Madurro, J.M.; et al. Electrochemical nano(bio)sensors: Advances, diagnosis and monitoring of diseases. Front. Biosci. 2011, 3, 663–689.
- 15.
Fusco, G.; Gallo, F.; Tortolini, C.; et al. AuNPs-functionalized PANABA-MWCNTs nanocomposite-based impedimetric immunosensor for 2,4-dichlorophenoxy acetic acid detection. Biosens. Bioelectron. 2017, 93, 52–56.
- 16.
Ji, D.; Liu, Z.; Liu, L.; et al. Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes. Biosens. Bioelectron. 2018, 119, 55–62.
- 17.
Ledin, P.A.; Jeon, J.W.; Geldmeier, J.A.; et al. Design of hybrid electrochromic materials with large electrical modulation of plasmonic resonances. ACS Appl. Mater. Interfaces 2016, 8, 13064–13075.
- 18.
Jeon, J.W.; Ledin, P.A.; Geldmeier, J.A.; et al. Electrically controlled plasmonic behavior of gold nanocube@polyaniline nanostructures: Transparent plasmonic aggregates. Chem. Mater. 2016, 28, 2868–2881.
- 19.
Zhou, J.; Panikkanvalappil, S.R.; Kang, S.; et al. Enhanced Electrochemical Dark-Field Scattering Modulation on a Single Hybrid Core–Shell Nanostructure. J. Phys. Chem. C 2019, 123, 28343–28352.
- 20.
Zhong, L.; Jiang, Y.; Liow, C.; et al. Highly Sensitive Electro-Plasmonic Switches Based on Fivefold Stellate Polyhedral Gold Nanoparticles. Small 2015, 11, 5395–5401.
- 21.
Peng, J.; Jeong, H.H.; Lin, Q.; et al. Scalable electrochromic nanopixels using plasmonics. Sci. Adv. 2019, 5, eaaw2205.
- 22.
McMillan, B.G.; Berlouis, L.E.A.; Cruickshank, F.R.; et al. Reflectance and electrolyte electroreflectance from gold nanorod arrays embedded in a porous alumina matrix. J. Electroanal. Chem. 2007, 599, 177–182.
- 23.
Montelongo, Y.; Sikdar, D.; Ma, Y.; et al. Electrotunable nanoplasmonic liquid mirror. Nat. Mater. 2017, 16, 1127–1135.
- 24.
Habib, A.; Zhu, X.; Can, U.I.; et al. Electro-plasmonic nanoantenna: A nonfluorescent optical probe for ultrasensitive label-free detection of electrophysiological signals. Sci. Adv. 2019, 5, eaav9786.
- 25.
Kamat, P.V.; Barazzouk, S.; Hotchandani, S. Electrochemical modulation of fluorophore emission on a nanostructured gold film. Angew. Chem. 2002, 114, 2888–2891.
- 26.
Cameron, P.J.; Zhong, X.; Knoll, W. Electrochemically controlled surface plasmon enhanced fluorescence response of surface immobilized CdZnSe quantum dots. J. Phys. Chem. C 2009, 113, 6003–6008.
- 27.
Lipovka, A.; Fatkullin, M.; Averkiev, A.; et al. Surface-enhanced Raman spectroscopy and electrochemistry: The ultimate chemical sensing and manipulation combination. Crit. Rev. Anal. Chem. 2024, 54, 110–134.
- 28.
Wilson, A.J.; Mohan, V.; Jain, P.K. Mechanistic understanding of plasmon-enhanced electrochemistry. J. Phys. Chem. C 2019, 123, 29360–29369.
- 29.
Hoener, B.S.; Kirchner, S.R.; Heiderscheit, T.S.; et al. Plasmonic sensing and control of single-nanoparticle electrochemistry. Chem 2018, 4, 1560–1585.
- 30.
Lopatynskyi, A.M.; Lopatynska, O.G.; Guo, L.J.; et al. Localized surface plasmon resonance biosensor—Part I: Theoretical study of sensitivity—Extended Mie approach. IEEE Sens. J. 2010, 11, 361–369.
- 31.
Lopatynskyi, A.; Guiver, M.; Chegel, V. Surface plasmon resonance biomolecular recognition nanosystem: Influence of the interfacial electrical potential. J. Nanosci. Nanotechnol. 2014, 14, 6559–6564.
- 32.
Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: San Diego, CA, USA 1998; 804p.
- 33.
Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370.
- 34.
Lide, R.D. Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, USA, 2004; 2616p.
- 35.
Fox M. Optical Properties of Solids/M. Fox; Oxford University Press: New York, NY, USA, 2001; 408p.
- 36.
Bockris, J.O.; White, R.E.; Conway, B.E. Modern Aspects of Electrochemistry; Kluwer Academic Publishers: New York, NY, USA, 1999; 350p.
- 37.
Papoff, F.; Hourahine, B. Geometrical Mie theory for resonances in nanoparticles of any shape. Opt. Express 2011, 19, 21432–21444.
- 38.
Sannomiya, T.; Dermutz, H.; Hafner, C.; et al. Electrochemistry on a localized surface plasmon resonance sensor. Langmuir 2010, 26, 7619–7626.
- 39.
Zalyubovskiy, S.J.; Bogdanova, M.; Deinega, A.; et al. Theoretical limit of localized surface plasmon resonance sensitivity to local refractive index change and its comparison to conventional surface plasmon resonance sensor. JOSA A 2012, 29, 994–1002.
- 40.
Lopatynskyi, A.; Lopatynska, O.; Chegel, V. Comparative analysis of response modes for gold nanoparticle biosensor based on localized surface plasmon resonance. Semicond. Phys. Quantum Electron. Optoelectron. 2011, 14, 114–121.