2601002871
  • Open Access
  • Article

Integrative In-Silico and Evolutionary Analysis of the Human Leptin Receptor CRH2 Domain for Therapeutic Targeting

  • Reji Manjunathan 1,*,   
  • Nalini Devarajan 1,2,   
  • Malathi Ragunathan 1,   
  • Raskin Erusan Rajagopal 1,*

Received: 28 Nov 2025 | Revised: 13 Jan 2026 | Accepted: 19 Jan 2026 | Published: 27 Jan 2026

Abstract

Leptin mediates various cellular processes through its receptor (OB-Rb) located on the cell membrane. The leptin receptor (LR) belongs to the Class 1 cytokine receptor family, characterised by four cysteine receptor homology domains (CRH). The three-dimensional structure of the leptin receptor has enhanced understanding of its atomic interactions with leptin. Further insights into the evolutionary significance and the relationship between leptin and its receptor improve therapeutic targeting of various diseases involving the leptin-leptin receptor axis. Therefore, in the present study, we aimed to analyse the evolutionary relationship of LR and to confirm its structure and function. The presence of four cysteine residues in the extracellular domain results in high peptide sequence homology among humans, monkeys, rats, and mice. The conserved leucine helps maintain the hydrophobic character of LR, and the disulfide bonds uphold the structural integrity of LR’s binding sites. The extracellular domain of human LR comprises seven structural domains, including the conserved BOX1 and BOX II motifs. A detailed analysis of the molecular interaction between leptin and CRH2, along with the identification of key residues, aids in the selection of selective LR agonists and antagonists for therapeutic purposes.

References 

  • 1.

    Zhang, Y.; Proenca, R.; Maffei, M.; et al. Positional Cloning of the Mouse Obese Gene and Its Human Homologue. Nature 1994, 372, 425–432. https://doi.org/10.1038/372425a0.

  • 2.

    Zhang, F.; Basinski, M.B.; Beals, J.M.; et al. Crystal Structure of the Obese Protein Leptin-E100. Nature 1997, 387, 206–209. https://doi.org/10.1038/387206a0.

  • 3.

    Prokop, J.W.; Duff, R.J.; Ball, H.C.; et al. Leptin and Leptin Receptor: Analysis of a Structure–Function Relationship in Interaction and Evolution from Humans to Fish. Peptides 2012, 38, 326–336. https://doi.org/10.1016/j.peptides.2012.10.002.

  • 4.

    Londraville, R.L.; Prokop, J.W.; Duff, R.J.; et al. On the Molecular Evolution of Leptin, Leptin Receptor, and Endospanin. Front. Endocrinol. 2017, 8, 58. https://doi.org/10.3389/fendo.2017.00058.

  • 5.

    Manjunathan, R.; Ragunathan, M. In Ovo Administration of Human Recombinant Leptin Shows Dose-Dependent Angiogenic Effect on Chicken Chorioallantoic Membrane. Biol. Res. 2015, 48, 29. https://doi.org/10.1186/s40659-015-0021-z.

  • 6.

    Nalini, D.; Karthick, R.; Shirin, V.; et al. Role of the Adipocyte Hormone Leptin in Cardiovascular Diseases: A Study from a Chennai-Based Population. Thromb. J. 2015, 13, 12. https://doi.org/10.1186/s12959-015-0042-4.

  • 7.

    Raskin, S.R.; Nalini, D.; Manohar, G.; et al. Correlation between Obesity and Inflammation in Cardiovascular Diseases—Evaluation of Leptin and Inflammatory Cytokines. Open J. Endocr. Metab. Dis. 2012, 2, 7–15. https://doi.org/10.4236/ojemd.2012.22002.

  • 8.

    Peelman, F.; Van Beneden, K.; Zabeau, L.; et al. Mapping of the Leptin Binding Sites and Design of a Leptin Antagonist. J. Biol. Chem. 2004, 279, 41038–41046. https://doi.org/10.1074/jbc.M404962200.

  • 9.

    Prokop, J.W.; Schmidt, C.; Gasper, D.; et al. Discovery of the Elusive Leptin in Birds: Identification of Several Missing Links in the Evolution of Leptin and Its Receptor. PLoS ONE 2014, 9, e92751. https://doi.org/10.1371/journal.pone.0092751.

  • 10.

    Eyckerman, S.; Broekaert, D.; Verhee, A.; et al. Identification of the Y985 and Y1077 Motifs as SOCS3 Recruitment Sites in the Murine Leptin Receptor. FEBS Lett. 2000, 486, 33–37. https://doi.org/10.1016/S0014-5793(00)02205-5.

  • 11.

    Fong, T.M.; Huang, R.R.; Tota, M.R.; et al. Localization of the Leptin Binding Domain in the Leptin Receptor. Mol. Pharmacol. 1998, 53, 234–240. https://doi.org/10.1124/mol.53.2.234.

  • 12.

    Adachi, H.; Takemoto, Y.; Bungo, T.; et al. Chicken Leptin Receptor Is Functional in Activating the JAK–STAT Pathway In Vitro. J. Endocrinol. 2008, 197, 335–342. https://doi.org/10.1677/JOE-08-0098.

  • 13.

    Ohkubo, T.; Adachi, H. Leptin Signaling and Action in Birds. J. Poult. Sci. 2008, 45, 233–240.

  • 14.

    Kyte, J.; Doolittle, R.F. A Simple Method for Displaying the Hydropathic Character of a Protein. J. Mol. Biol. 1982, 157, 105–132. https://doi.org/10.1016/0022-2836(82)90515-0.

  • 15.

    Longue, C.; Ward, A.C. Evolution of Class I Cytokine Receptors. BMC Evol. Biol. 2007, 7, 120. https://doi.org/10.1186/1471-2148-7-120.

  • 16.

    Denver, R.J.; Bonett, R.M.; Boorse, G.C. Evolution of Leptin Structure and Function. Neuroendocrinology 2011, 94, 21–38. https://doi.org/10.1159/000328435.

  • 17.

    Longue, C.; O’Sullivan, L.A.; Trengove, M.C.; et al. Evolution of JAK–STAT Pathway Components: Mechanisms and Role in Immune System Development. PLoS ONE 2012, 7, e32777. https://doi.org/10.1371/journal.pone.0032777.

  • 18.

    Gorissen, M.; Bernier, N.J.; Nabuurs, S.B.; et al. Two Divergent Leptin Paralogues in Zebrafish (Danio rerio) That Originate Early in Teleostean Evolution. J. Endocrinol. 2009, 201, 329–339. https://doi.org/10.1677/JOE-09-0034.

  • 19.

    Morris, D.L.; Rui, L. Recent Advances in Understanding Leptin Signaling and Leptin Resistance. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E1247–E1259. https://doi.org/10.1152/ajpendo.00274.2009.

  • 20.

    Munikumar, M.; Siva Krishna, V.; Seshadri Reddy, V.; et al. In Silico Design of Small Peptides Antagonist against Leptin Receptor for the Treatment of Obesity and Its Associated Immune-Mediated Diseases. J. Mol. Graphics Modell. 2018, 82, 20–36. https://doi.org/10.1016/j.jmgm.2018.04.002.

  • 21.

    Goudar, G.; Manne, M.; Sathisha, G.J.; et al. Phenolic, Nutritional and Molecular Interaction Study among Different Millet Varieties. Food Chem. Adv. 2023, 2, 100150. https://doi.org/10.1016/j.focha.2022.100150.

Share this article:
How to Cite
Manjunathan, R.; Devarajan, N.; Ragunathan, M.; Rajagopal, R. E. Integrative In-Silico and Evolutionary Analysis of the Human Leptin Receptor CRH2 Domain for Therapeutic Targeting. Bioinformatics Methods and Applications 2026, 1 (1), 2.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2026 by the authors.