- 1.
Hattori, M.; Sugiura, N.; Wazawa, T.; et al. Ratiometric Bioluminescent Indicator for a Simple and Rapid Measurement of Thrombin Activity Using a Smartphone. Anal. Chem. 2021, 93, 13520–13526.
- 2.
Popović, M.; Smiljanić, K.; Dobutović, B.; et al. Thrombin and vascular inflammation. Mol. Cell. Biochem. 2012, 359, 301–313.
- 3.
Han, C.; Yuan, X.; Shen, Z.; et al. A paper-based lateral flow sensor for the detection of thrombin and its inhibitors. Anal. Chim. Acta 2022, 1205, 339756.
- 4.
Liu, X.H.; Ba, R.Y.; Wang, W.H.; et al. Roles of nanomaterials in thrombin detection. TrAC-Trends Anal. Chem. 2024, 175, 117734.
- 5.
Ye, F.; Garton, H.J.L.; Hua, Y.; et al. The Role of Thrombin in Brain Injury After Hemorrhagic and Ischemic Stroke. Transl. Stroke Res. 2021, 12, 496–511.
- 6.
Liu, Z.W.; Ma, N.; Yu, S.B.; et al. Hemin-catalyzed SI-RAFT polymerization for thrombin detection. Microchem. J. 2023, 189, 108521.
- 7.
Troisi, R.; Balasco, N.; Autiero, I.; et al. Exosite Binding in Thrombin: A Global Structural/Dynamic Overview of Complexes with Aptamers and Other Ligands. Int. J. Mol. Sci. 2021, 22, 10803.
- 8.
Ning, J.; Bao, X.; Chen, H.; et al. A highly sensitive and specific fluorescent probe for thrombin detection and high-throughput screening of thrombin inhibitors in complex matrices. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 325, 125136.
- 9.
Samani, S.S.; Sameiyan, E.; Yazdi, F.T.; et al. Sandwich-type aptamer-based biosensors for thrombin detection. Anal. Methods-UK 2024, 16, 1985–2001.
- 10.
Soni, G.K.; Wangoo, N.; Sharma, R.K. A smartphone-based ultrasensitive colorimetric aptasensing platform for serine protease thrombin detection. Microchem. J. 2024, 199, 109906.
- 11.
Zhang, J.; Xiang, J.; Liao, L.; et al. Proximity binding-initiated DNA walker and CRISPR/Cas12a reaction for dual signal amplification detection of thrombin. Talanta 2023, 256, 124286.
- 12.
Huang, Y.; Li, S.; Liu, C.; et al. One-step competitive assay for detection of thrombin via disassembly of diblock oligonucleotide functionalised nanogold aggregates. Sensor Actuat. B-Chem. 2023, 376, 133032.
- 13.
Sharma, R.; Waller, A.P.; Agrawal, S.; et al. Thrombin-Induced Podocyte Injury Is Protease-Activated Receptor Dependent. J. Am. Soc. Nephrol. 2017, 28, 2619–2631.
- 14.
Raucci, A.; Sorrentino, G.; Singh, S.; et al. Cost-effective, user-friendly detection and preconcentration of thrombin on a sustainable paper-based electrochemical platform. Anal. Bioanal. Chem. 2025, 417, 1863–1872.
- 15.
Wang, Y.; Liu, C.; Zhao, W.; et al. Biosensors and Biomarkers for the Detection of Motion Sickness. Adv. Healthc. Mater. 2025, 14, e2403606.
- 16.
Vairaperumal, T.; Huang, C.C.; Liu, P.Y. Optical Nanobiosensor-Based Point-of-Care Testing for Cardiovascular Disease Biomarkers. ACS Appl. Bio Mater. 2023, 6, 2591–2613.
- 17.
Dong, T.; Yu, C.; Mao, Q.; et al. Advances in biosensors for major depressive disorder diagnostic biomarkers. Biosens. Bioelectron. 2024, 258, 116291.
- 18.
Klebes, A.; Ates, H.C.; Verboket, R.D.; et al. Emerging multianalyte biosensors for the simultaneous detection of protein and nucleic acid biomarkers. Biosens. Bioelectron. 2024, 244, 115800.
- 19.
Chen, Q.; Yao, L.; Wu, Q.; et al. Rapid and simultaneous visual typing of high-risk HPV-16/18 with use of integrated lateral flow strip platform. Microchim. Acta 2022, 189, 350.
- 20.
Miller, B.S.; Bezinge, L.; Gliddon, H.D.; et al. Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics. Nature 2020, 587, 588–593.
- 21.
Tran, V.; Walkenfort, B.; König, M.; et al. Rapid, quantitative, and ultrasensitive point-of-care testing: A portable SERS reader for lateral flow assays in clinical chemistry. Angew. Chem. Int. Edgl. 2019, 58, 442–446.
- 22.
Ding, X.; Ma, J.; Fan, T.; et al. Inorganic nanoparticles-based strategies for the microbial detection in infectious diseases. Interdiscip. Med. 2024, 2, e20230045.
- 23.
Wei, R.; Wang, D.; Zhou, P.; et al. A lateral flow assay strip for simultaneous detection of miRNA and exosomes in liver cancer. Chem. Commun. 2024, 60, 7491–7494.
- 24.
Wang, Z.; Zhao, J.; Xu, X.; et al. An overview for the nanoparticles-based quantitative lateral flow assay. Small Methods 2022, 6, 2101143.
- 25.
Su, L.H.; Chen, Y.Q.; Wang, L.L.; et al. Dual-signal based immunoassay for colorimetric and photothermal detection of furazolidone. Sensor Actuat. B-Chem. 2021, 331, 129431.
- 26.
Sena-Torralba, A.; Torné-Morató, H.; Parolo, C.; et al. A novel ratiometric fluorescent approach for the modulation of the dynamic range of lateral flow immunoassays. Adv. Mater. Technol.-US 2022, 7, 2101450.
- 27.
Wu, G.; Du, C.; Peng, C.; et al. Machine learning-assisted laccase-like activity nanozyme for intelligently onsite real-time and dynamic analysis of pyrethroid pesticides. J. Hazard. Mater. 2024, 480, 136015.
- 28.
Liu, X.; Chen, X.; Yin, S.; et al. Dual-modal detection of antimicrobial susceptibility in pathogenic bacteria based on the high-throughput microfluidic platform. Chem. Eng. J. 2024, 499, 156506.
- 29.
Cao, L.; Ren, Y.; Ling, N.; et al. An ultrasensitive smartphone-assisted bicolor-ratiometric fluorescence sensing platform based on a “noise purifier” for point-of-care testing of pathogenic bacteria in food. Food Chem. 2024, 446, 138805.
- 30.
Wang, S.; Liang, N.; Hu, X.; et al. Carbon dots and covalent organic frameworks based FRET immunosensor for sensitive detection of Escherichia coli O157:H7. Food Chem. 2024, 447, 138663.
- 31.
Koo, J.J.; Jung, K.H.; Park, K.; et al. Characterization of the Interfacial Structures of Core/Shell CdSe/ZnS QDs. J. Phys. Chem. Lett. 2022, 13, 7220–7227.
- 32.
Nie, Y.; Liu, Y.; Zhang, Q.; et al. Fe3O4 NP@ZIF-8/MoS2 QD-based electrochemiluminescence with nanosurface energy transfer strategy for point-of-care determination of ATP. Anal. Chim. Acta 2020, 1127, 190–197.
- 33.
Lao, X.; Liu, Y.; Li, L.; et al. Plasmon-enhanced FRET biosensor based on Tm3+/Er3+ co-doped core-shell upconversion nanoparticles for ultrasensitive virus detection. Aggregate 2024, 5, e448.
- 34.
Castro, R.C.; Pascoa, R.; Saraiva, M.; et al. Exploring Distinct Second-Order Data Approaches for Thiamine Quantification via Carbon Dot/Silver Nanoparticle FRET Reversion. Biosensors 2024, 14, 604.
- 35.
Wang, Z.; Xing, K.; Ding, N.; et al. Lateral flow immunoassay based on dual spectral-overlapped fluorescence quenching of polydopamine nanospheres for sensitive detection of sulfamethazine. J. Hazard. Mater. 2022, 423, 127204.
- 36.
Shan, X.; Lu, J.; Li, C.; et al. Ultrasensitive solid-state electrochemiluminescence sensor based on lotus root shaped carbon fiber, CdSe QDs and Fe3O4 synergically amplify Ru (bpy) 32+ luminophore signal for detection of cyfluthrin. Microchim. Acta 2024, 191, 215.
- 37.
Wang, S.; Zong, Z.; Xu, J.; et al. Recognition-Activated Primer-Mediated Exponential Rolling Circle Amplification for Signal Probe Production and Ultrasensitive Visual Detection of Ochratoxin A with Nucleic Acid Lateral Flow Strips. Anal. Chem. 2023, 95, 16398–16406.