- 1.
Sonawane, J.M.; Yadav, A.; Ghosh, P.C.; et al. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens. Bioelectron. 2017, 90, 558–576. https://doi.org/10.1016/j.bios.2016.10.014.
- 2.
Santoro, C.; Arbizzani, C.; Erable, B.; et al. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109.
- 3.
Sonawane, J.M.; Goenka, R.; Ghosh, P.C.; et al. Electrifying Waste Management: Integration of Polyaniline-Coated Electrodes in a Microbial Fuel Cell Stack for Power Generation and Leachate Treatment. Environ. Sci. Technol. 2023, 57, 6250–6260. https://doi.org/10.2139/SSRN.4600892.
- 4.
Ucar, D.; Zhang, Y.; Angelidaki, I. An overview of electron acceptors in microbial fuel cells. Front. Microbiol. 2017, 8, 643. https://doi.org/10.3389/fmicb.2017.00643.
- 5.
Hirooka, K.; Ichihashi, O.; Takeguchi, T. Sodium cobalt oxide as a non-platinum cathode catalyst for microbial fuel cells. Sustain. Environ. Res. 2018, 28, 322–325. https://doi.org/10.1016/j.serj.2018.07.002.
- 6.
Baudler, A.; Schmidt, I.; Langner, M.; et al. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems. Energy Environ. Sci. 2015, 8, 2048–2055. https://doi.org/10.1039/C5EE00866B.
- 7.
Yuan, H.; He, Z. Graphene-modified electrodes for enhancing the performance of microbial fuel cells. Nanoscale 2015, 7, 7022–7029. https://doi.org/10.1039/c4nr05637j.
- 8.
Peng, X.H.; Chu, X.Z.; Huang, P.F.; et al. Improved Power Performance of Activated Carbon Anode by Fe2O3 Addition in Microbial Fuel Cells. Appl. Mech. Mater. 2014, 700, 170–174. https://doi.org/10.4028/www.scientific.net/amm.700.170.
- 9.
Wu, G.; Bao, H.; Xia, Z.; et al. Polypyrrole/sargassum activated carbon modified stainless-steel sponge as high-performance and low-cost bioanode for microbial fuel cells. J. Power Sources 2018, 384, 86–92. https://doi.org/10.1016/j.jpowsour.2018.02.045.
- 10.
Mustakeem. Electrode materials for microbial fuel cells: Nanomaterial approach. Mater. Renew. Sustain. Energy 2015, 4, 22. https://doi.org/10.1007/s40243-015-0063-8.
- 11.
Zhu, X.; Logan, B.E. Copper anode corrosion affects power generation in microbial fuel cells. J. Chem. Technol. Biotechnol. 2014, 89, 471–474.
- 12.
Peng, X.; Chen, S.; Liu, L.; et al. Modified stainless steel for high performance and stable anode in microbial fuel cells. Electrochim. Acta 2016, 194, 246–252. https://doi.org/10.1016/j.electacta.2016.02.127.
- 13.
He, Y.-R.; Xiao, X.; Li, W.-W.; et al. Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode. Phys. Chem. Chem. Phys. 2012, 14, 9966–9971. https://doi.org/10.1039/c2cp40873b.
- 14.
Mahadevan, A.; Gunawardena, D.A.; Fernando, S. Technology and Application of Microbial Fuel Cells. In Technology and Application of Microbial Fuel Cells; Bentham Science Publishers: Oak Park, IL, USA, 2014; pp. 13–32. https://doi.org/ 10.5772/57200.
- 15.
e Silva, T.C.A.; Bhowmick, G.D.; Ghangrekar, M.M.; et al. SiOC-based polymer derived-ceramic porous anodes for microbial fuel cells. Biochem. Eng. J. 2019, 148, 29–36.
- 16.
Cui, H.F.; Du, L.; Guo, P.B.; et al. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J. Power Source 2015, 283, 46–53.
- 17.
Nosek, D.; Jachimowicz, P.; Cydzik-Kwiatkowska, A. Anode modification as an alternative approach to improve electricity generation in microbial fuel cells. Energies 2020, 13, 6596.
- 18.
Kovendhan, M.; Kang, H.; Jeong, S.; Youn, J-S.; Oh, Park, Y-K.; Jeon, K-J. Study of stainless steel electrodes after electrochemical analysis in sea water condition, Environmental Research 2019, 173, 549–555.
- 19.
Hou, J.; Liu, Z.; Yang, S.; et al. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells. J. Power Sources 2014, 258, 204–209. https://doi.org/10.1016/j.jpowsour.2014.02.035.
- 20.
Pocaznoi, D.; Calmet, A.; Etcheverry, L.; et al. Stainless steel is a promising electrode material for anodes of microbial fuel cells. Energy Environ. Sci. 2012, 5, 9645–9652. https://doi.org/10.1039/C2EE22429A.
- 21.
Hou, J.; Liu, Z.; Li, Y. Polyaniline Modified Stainless Steel Fiber Felt for High-Performance Microbial Fuel Cell Anodes. J. Clean Energy Technol. 2015, 3, 165–169. https://doi.org/10.7763/JOCET.2015.V3.189.
- 22.
Song, R.B.; Wu, Y.C.; Lin, Z.Q.; et al. Living and Conducting: Coating Individual Bacterial Cells with In Situ Formed Polypyrrole. Angew. Chem. Int. Ed. Engl. 2017, 56, 10516–10520. https://doi.org/10.1002/anie.201704729.
- 23.
Yuan, Y.; Kim, S. Polypyrrole-coated reticulated vitreous carbon as anode in microbial fuel cell for higher energy output. Bull. Korean Chem. Soc. 2008, 29, 168–172. https://doi.org/10.5012/bkcs.2008.29.1.168.
- 24.
Tang, X.; Li, H.; Du, Z.; et al. Conductive polypyrrole hydrogels and carbon nanotubes composite as an anode for microbial fuel cells. RSC Adv. 2015, 5, 50968–50974. https://doi.org/10.1039/C5RA06064H.
- 25.
Kamali, S.; Esfandyari, M.; Jafari, D. A review of the application of polymeric materials in microbial fuel cells. Polym. Bull. 2025, 82:7465–7492.
- 26.
Lin, X.Q.; Li, Z.L.; Liang, B.; et al. Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell. Chemosphere 2019, 219, 358–364.
- 27.
Zhang, P.; Zhou, X.; Qi, R.; et al. Conductive polymer–exoelectrogen hybrid bioelectrode with improved biofilm formation and extracellular electron transport. Adv. Electron. Mater. 2019, 5, 1900320.
- 28.
Kang, Y.L.; Pichiah, S.; Ibrahim, S. Facile reconstruction of microbial fuel cell (MFC) anode with enhanced exoelectrogens selection for intensified electricity generation. Int. J. Hydrog. Energy 2017, 42, 1661–1671.
- 29.
Kumar, A.; Narayanan, S.S.; Thapa, B.S.; et al. Application of low-cost plant-derived carbon dots as a sustainable anode catalyst in microbial fuel cells for improved wastewater treatment and power output. Catalysts 2022, 12, 1580.
- 30.
Sonawane, J.M.; Al-Saadi, S.; Raman, R.K.S.; et al. Exploring the use of polyaniline-modified stainless steel plates as low-cost, high-performance anodes for microbial fuel cells. Electrochim. Acta 2018, 268, 484–493. https://doi.org/10.1016/j.electacta. 2018. 01.163.
- 31.
Sonawane, J.M.; Patil, S.A.; Ghosh, P.C.; et al. Low-cost stainless-steel wool anodes modified with polyaniline and polypyrrole for high-performance microbial fuel cells. J. Power Sources 2018, 379, 103–114. https://doi.org/10.1016/j.jpowsour.2018.01.001.
- 32.
Pu, K.B.; Ma, Q.; Cai, W.F.; et al. Polypyrrole modified stainless steel as high performance anode of microbial fuel cell. Biochem. Eng. J. 2018, 132, 255–261.
- 33.
Sonawane, J.M.; Ghosh, P.C.; Adeloju, S.B. Electrokinetic behaviour of conducting polymer modified stainless steel anodes during the enrichment phase in microbial fuel cells. Electrochim. Acta 2018, 287, 96–105. https://doi.org/10.1016/j.electacta.2018.07.077.
- 34.
Gajda, I.; Greenman, J.; Ieropoulos, I.A. Recent advancements in real-world microbial fuel cell applications. Curr. Opin. Electrochem. 2018, 11, 78–83. https://doi.org/10.1016/j.coelec.2018.09.006.
- 35.
Gnana Kumar, G.; Kirubaharan, C.J.; Udhayakumar, S.; et al. Synthesis, structural, and morphological characterizations of reduced graphene oxide-supported polypyrrole anode catalysts for improved microbial fuel cell performances. ACS Sustain. Chem. Eng. 2014, 2, 2283–2290. https://doi.org/10.1021/sc500244f.
- 36.
Pérez-Rodríguez, P.; Ovando-Medina, V.M.; Martínez-Amador, S.Y.; et al. Bioanode of polyurethane/graphite/polypyrrole composite in microbial fuel cells. Biotechnol. Bioprocess Eng. 2016, 21, 305–313. https://doi.org/10.1007/s12257-015-0628-5.
- 37.
Chen, W.; Liu, Z.; Su, G.; et al. Composite-modified anode by MnO 2 /polypyrrole in marine benthic microbial fuel cells and its electrochemical performance. Int. J. Energy Res. 2017, 41, 845–853. https://doi.org/10.1002/er.3674.
- 38.
Roh, S.-H. Electricity Generation from Microbial Fuel Cell with Polypyrrole-Coated Carbon Nanofiber Composite. J. Nanosci. Nanotechnol. 2015, 15, 1700–1703.
- 39.
Zou, Y.; Xiang, C.; Yang, L.; et al. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int. J. Hydrog. Energy 2008, 33, 4856–4862. https://doi.org/10.1016/j.ijhydene.2008.06.061.
- 40.
Harnisch, F.; Koch, C.; Patil, S.A.; et al. Revealing the electrochemically driven selection in natural community derived microbial biofilms using flow-cytometry. Energy Environ. Sci. 2011, 4, 1265–1267. https://doi.org/10.1039/c0ee00605j.
- 41.
Liu, Y.; Harnisch, F.; Fricke, K.; et al. Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosens. Bioelectron. 2008, 24, 1006–1011. https://doi.org/10.1016/j.bios.2008.08.001.
- 42.
Sonawane, J.M.; Adeloju, S.B.; Ghosh, P.C. Landfill leachate: A promising substrate for microbial fuel cells. Int. J. Hydrog. Energy 2017, 42, 23794–23798. https://doi.org/10.1016/j.ijhydene.2017.03.137.
- 43.
Ramoa, S.D.A.; Barra, G.M.O.; Merlini, C.; et al. Novel electrically conductive polyurethane/montmorillonite-polypyrrole nanocomposites. Express Polym. Lett. 2015, 9, 945–958.
- 44.
Raotole, P.; Patil, P.P.; Gaikwad, A.B. Polypyrrole Coatings on Low Carbon Steel from Aqueous Oxalate Solution. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 62–67.
- 45.
Vetter, C.A.; Gelling, V.J. Template-Free Aqueous Synthesis of Conductive Polymer Nanoparticles. US20140110636A1, 24 April 2014.
- 46.
Li, Z.; Cai, J.; Cizek, P.; et al. A self-supported, flexible, binder-free pseudo-supercapacitor electrode material with high capacitance and cycling stability from hollow, capsular polypyrrole fibers. J. Mater. Chem. A 2015, 3, 16162–16167.
- 47.
Chang, J.H.; Hunter, I.W. Characterization and control of the wettability of conducting polymer thin films. In Proceedings of the Materials Research Society Symposium, 31 January 2011; pp. 7–12. https://doi.org/10.1557/PROC-1228-KK04-03.
- 48.
Thombare, J.V.; Lohar, G.M.; Shinde, S.K.; et al. Synthesis, characterization and surface wettability study of polypyrrole films: Effect of applied constant current density. Electron. Mater. Lett. 2015, 11, 266–270. https://doi.org/10.1007/s13391-014-4082-x.
- 49.
Valtera, S.; Prokeš, J.; Kopecká, J.; et al. Dye-stimulated control of conducting polypyrrole morphology. RSC Adv. 2017, 7, 51495–51505. https://doi.org/10.1039/c7ra10027b.
- 50.
Shen, X.; Xu, X.; Li, C.; et al. Robust coating for high-temperature and corrosion-resistant. J. Vac. Sci. Technol. A 2024, 42. https://doi.org/10.1116/6.0003954.
- 51.
Goldoni, R.; Thomaz, D.V.; Ottolini, M.; et al. Characterization of In situ electrosynthesis of polyaniline on pencil graphite electrodes through electrochemical, spectroscopical and computational methods. J. Mater. Sci. 2024, 59, 10287–10308. https://doi.org/10.1007/S10853-024-09745-8.
- 52.
Ha, P.T.; Moon, H.; Kim, B.H.; et al. Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage. Biosens.Bioelectron. 2010, 25, 1629–1634.
- 53.
Altahan, M.F.; Beltagi, A.M.; Abdel-Azzem, M.; et al. An impedimetric approach for determination of ammonium using silver/poly-1-aminoanthraquinone/carbon paste electrode. Sci Rep. 2024, 14, 18555. https://doi.org/10.1038/s41598-024-68321-x].
- 54.
Ramesh, D. Evaluation of Corrosion Stability of Water Soluble Epoxy-Ester Primer through Electrochemical Studies. Mater. Sci. Appl. 2012, 3, 333–347.
- 55.
Fan, C.; Liu, Y.; Yin, X.; et al. Electrochemical Behavior and Interfacial Delamination of a Polymer-Coated Galvanized Steel System in Acid Media. ACS Omega 2021, 6, 20331–20340. https://doi.org/10.1021/acsomega. 1c02270.
- 56.
Zuo, Y.; Pang, R.; Li, W.; et al. The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS. Corros. Sci. 2008, 50, 3322–3328.
- 57.
Yuan, H.; Deng, L.; Chen, Y.; et al. MnO2/Polypyrrole/MnO2 multi-walled-nanotube-modified anode for high-performance microbial fuel cells. Electrochim. Acta 2016, 196, 280–285. https://doi.org/10.1016/j.electacta.2016.02.183.