- 1.
Lead, J.R.; Batley, G.E.; Alvarez, P.J.; et al. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review. Environ. Toxicol. Chem. 2018, 37, 2029–2063.
- 2.
Puri, M.; Gandhi, K.; Kumar, M.S. Emerging environmental contaminants: A global perspective on policies and regulations. J. Environ. Manag. 2023, 332, 117344.
- 3.
Wiesner, M.; Bottero, J.Y. Environmental Nanotechnology: Applications and Impacts of Nanomaterials; Mcgraw-Hill: New York, NY, USA, 2007.
- 4.
Jeremiah, S.S.; Miyakawa, K.; Morita, T.; et al. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem. Biophys. Res. Commun. 2020, 533, 195–200.
- 5.
Sikder, M.; Croteau, M.N.; Poulin, B.A.; et al. Effect of Nanoparticle Size and Natural Organic Matter Composition on the Bioavailability of Polyvinylpyrrolidone-Coated Platinum Nanoparticles to a Model Freshwater Invertebrate. Environ. Sci. Technol. 2021, 55, 2452–2461.
- 6.
Dolganyuk, V.; Belova, D.; Babich, O.; et al. Microalgae: A Promising Source of Valuable Bioproducts. Biomolecules 2020, 10, 1153. https://doi.org/10.3390/biom10081153.
- 7.
Manahan, S.E. Environmental Chemistry, 8th ed.; New Age International: New York, NY, USA, 2005.
- 8.
Hoffman, D.J.; Rattner, B.A.; Burton, G.A., Jr.; et al. Handbook of Ecotoxicology, 1st ed.; CRC Press: Boca Raton, FL, USA, 1995.
- 9.
Ratte, H.T. Bioaccumulation and toxicity of silver compounds: A Review. Environ. Toxicol. Chem. 1999, 18, 89–108.
- 10.
Mackay, D.; Celsie AK, D.; Powellc, D.E.; et al. Bioconcentration, bioaccumulation, biomagnification and trophic magnification: A modelling perspective. Environ. Sci. Process. Impacts 2018, 20, 221–228.
- 11.
Rajewicz, W.; Romano, D.; Schmickl, T.; et al. Daphnia’s phototaxis as an indicator in ecotoxicological studies: A review. Aquat. Toxicology. 2023, 265, 106762.
- 12.
Costa, C.R.; Olivi, P.; Botta, C.M.R.; et al. Toxicity in Aquatic Environments: Discussion and Evaluation Methods. Química Nova 2008, 31, 1820–1830.
- 13.
Kalman, J.; Paul, K.B.; Khan, F.R.; et al. Characterisation of bioaccumulation dynamics of three differently coated silver nanoparticles and aqueous silver in a simple freshwater food chain. Environ. Chem. 2015, 12, 662–672.
- 14.
Grillo, R.; Rosa, A.H.; Fraceto, L.F. Engineered nanoparticles and organic matter: A review of the state-of-the-art. Chemosphere 2015, 119, 608–619.
- 15.
Popa, D.G.; Lupu, C.; Constantinescu-Aruxandei, D.; et al. Humic Substances as Microalgal Biostimulants-Implications for Microalgal Biotechnology. Mar. Drugs 2022, 20, 327.
- 16.
Alt, V.; Bechert, T.; Steinrücke, P.; et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004, 25, 4383–4391.
- 17.
Li, L.; Wu, H.; Peijnenburg, W.J.; et al. Both released silver ions and particulate Ag contribute to the toxicity of AgNPs to earthworm Eisenia fetida. Nanotoxicology 2015, 9, 792–801.
- 18.
Watanabe, C.H.; Domingos, R.F.; Benedetti, M.F.; et al. Dissolution and fate of silver nanoparticles in the presence of natural aquatic organic matter. J. Environ. Expo. Assess. 2023, 2, 6.
- 19.
Aiken, G.R. Isolation and concentration techniques for aquatic humic substances. In Humic Substances in Soil, Sediment and Water: Geochemistry and Isolation; Wiley-Interscience, New York, NY, USA, 1985.
- 20.
Thurman, E.M.; Malcolm, R.L. Preparative isolation of aquatic humic substances. Environ. Sci. Technol. 1981, 15, 463–466.
- 21.
Abbt-Braun, G.; Lankes, U.; Frimmel, F.H. Structural characterization of aquatic humic substances—The need for a multiple method approach. Aquat. Sci. 2004, 66, 151–170.
- 22.
OECD. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test. 2011. Available online: https://www.oecd-ilibrary.org/content/publication/9789264069923-en (accessed on 1 January 2015).
- 23.
Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms; USEPA: Washington, DC, USA, 2002.
- 24.
Aquatic Ecotoxicology—Chronic Toxicity—Test Algae (Chlorophyceae); ABNT: Rio de Janeiro, Brazil, 2018.
- 25.
Assumpção, R.M.V.; Morita, T. Manual de Soluções, Reagentes e Solventes: Padronização-Preparação-Purificação. 1968. Available online: https://books.google.com.br/books?id=crdcAAAAMAAJ (accessed on 1 June 2015).
- 26.
APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association Inc.: New York, NY, USA, 1995.
- 27.
OECD. Test No. 202: Daphnia sp. Acute Immobilisation Test. 2004. Available online: https://www.oecd-ilibrary.org/content/publication/9789264069947-en (accessed on 1 January 2015).
- 28.
OECD. Test No. 211: Daphnia Magna Reproduction Test. 2012. Available online: https://www.oecd-ilibrary.org/content/publication/9789264185203-en (accessed on 1 January 2015).
- 29.
Aquatic Ecotoxicology—Acute Toxicity—Test with Daphnia spp (Cladocera, Crustacea); ABNT: Rio de Janeiro, Brazil, 2016.
- 30.
Hamilton, M.; Russo, R.; Thurston, R. Trimmed Spearman-Karber Method for Estimating Median Lethal Concentrations in Toxicity Bioassays; U.S. Environmental Protection Agency: Washington, DC, USA, 1977.
- 31.
West, I.; Gulley, D. Toxstat 3.5; University of Wyoming: Laramie, WY, USA, 1996.
- 32.
Ribeiro, F.; Gallego-Urrea, J.A.; Jurkschat, K.; et al. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci. Total Environ. 2014, 466, 232–241.
- 33.
Zheng, X.; Xu, Z.; Zhao, D.; et al. Double-dose responses of Scenedesmus capricornus microalgae exposed to humic acid. Sci. Total Environ. 2022, 806, 150547.
- 34.
Lee, J.; Park, J.H.; Shin, Y.S.; et al. Effect of dissolved organic matter on the growth of algae, Pseudokirchneriella subcapitata, in Korean lakes: The importance of complexation reactions. Ecotoxicol. Environ. Saf. 2009, 72, 335–343. https://doi.org/10.1016/j.ecoenv.2008.01.013.
- 35.
Domingos, R.F.; Franco, C.; Pinheiro, J.P. Stability of core/shell quantum dots—Role of pH and small organic ligands. Environ. Sci. Pollut. Res. 2013, 20, 4872–4880.
- 36.
Nasser, F.; Constantinou, J.; Lynch, I. Nanomaterials in the Environment Acquire an “Eco-Corona” Impacting their Toxicity to Daphnia Magna-a Call for Updating Toxicity Testing Policies. Proteomics 2020, 20, e1800412. https://doi.org/10.1002/pmic.201800412.
- 37.
Baalousha, M.; Manciulea, A.; Cumberland, S.; et al. Aggregation and surface properties of iron oxide nanoparticles: Influence of pH and natural organic matter. Environ. Toxicol. Chem. 2008, 27, 1875–1882.
- 38.
Gunsolus, I.L.; Mousavi, M.P.; Hussein, K.; et al. Effects of Humic and Fulvic Acids on Silver Nanoparticle Stability, Dissolution, and Toxicity. Environ. Sci. Technol. 2015, 49, 8078–8086.
- 39.
Sharma, V.K.; Siskova, K.M.; Zboril, R.; et al. Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Adv. Colloid Interface Sci. 2014, 204, 15–34.
- 40.
Yu, Q.; Wang, Z.; Zhai, Y.; et al. Effects of humic substances on the aqueous stability of cerium dioxide nanoparticles and their toxicity to aquatic organisms. Sci. Total Environ. 2021, 781, 146583.
- 41.
Domingos, R.F.; Baalousha, M.A.; Ju-Nam, Y.; et al. Characterizing Manufactured Nanoparticles in the Environment: Multimethod Determination of Particle Sizes. Environ. Sci. Technol. 2009, 43, 7277–7284.
- 42.
Maurer-Jones, M.A.; Gunsolus, I.L.; Murphy, C.J.; et al. Toxicity of Engineered Nanoparticles in the Environment. Anal. Chem. 2013, 85, 3036–3049.
- 43.
Hiriart-Baer, V.P.; Fortin, C.; Lee, D.Y.; et al. Toxicity of silver to two freshwater algae, Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata, grown under continuous culture conditions: Influence of thiosulphate. Aquat. Toxicol. 2006, 78, 136–148.
- 44.
Navarro, E.; Baun, A.; Behra, R.; et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 2008, 17, 372–386.
- 45.
Handy, R.D.; Cornelis, G.; Fernandes, T.; et al. Ecotoxicity test methods for engineered nanomaterials: Practical experiences and recommendations from the bench. Environ. Toxicol. Chem. 2012, 31, 15–31.
- 46.
Aruoja, V.; Dubourguier, H.C.; Kasemets, K.; et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ. 2009, 407, 1461–1468.
- 47.
Chen, Z.; Porcher, C.; Campbell, P.G.; et al. Influence of Humic Acid on Algal Uptake and Toxicity of Ionic Silver. Environ. Sci. Technol. 2013, 47, 8835–8842.
- 48.
Naguyen, M.; Moon, J.Y.; Lee, Y.C. Microalgal ecotoxicity of nanoparticles: An updated review. Ecotoxicol. Environ. Saf. 2020, 201, 110781.
- 49.
Campbell, P.G.C.; Twiss, M.R.; Wilkinson, K.J. Accumulation of natural organic matter on the surfaces of living cells: Implications for the interaction of toxic solutes with aquatic biota. Can. J. Fish. Aquat. Sci. 1997, 54, 2543–2554.
- 50.
Knauer, K.; Buffle, J. Adsorption of Fulvic Acid on Algal Surfaces and Its Effect on Carbon Uptake. J. Phycol. 2001, 37, 47–51.
- 51.
Zhao, C.-M.; Wang, W.-X. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ. Toxicol. Chem. 2011, 30, 885–892.
- 52.
Serwatowska, K.; Nederstigt, T.A.; Peijnenburg, W.J.; et al. Chronic toxicity of core–shell SiC/TiO2 (nano)-particles to Daphnia magna under environmentally relevant food rations in the presence of humic acid. Nanotoxicology 2024, 18, 107–118. https://doi.org/10.1080/17435390.2024.2321873.
- 53.
Gao, J.I.E.; Youn, S.; Hovsepyan, A.; et al. Dispersion and Toxicity of Selected Manufactured Nanomaterials in Natural River Water Samples: Effects of Water Chemical Composition. Environ. Sci. Technol. 2009, 43, 3322–3328.
- 54.
Mohammed, A. Why are Early Life Stages of Aquatic Organisms more Sensitive to Toxicants than Adults? In New Insights into Toxicity and Drug Testing; InTech: London, UK, 2013.
- 55.
Huang, B.; Li, D.; Yang, Y. Joint Toxicity of Two Phthalates with Waterborne Copper to Daphnia magna and Photobacterium phosphoreum. Bull. Environ. Contam. Toxicol. 2016, 97, 380–386.
- 56.
Zhao, C.M.; Wang, W.X. Size-Dependent Uptake of Silver Nanoparticles in Daphnia magna. Environ. Sci. Technol. 2012, 46, 11345–11351.
- 57.
Souza, M.B. Avaliação da toxicidade aguda de um herbicida comercial e dos componentes químicos Diuron e Hexazinona em Ceriodaphnia dubia. PhD Thesis, Universidade de Ribeirão Preto, Ribeirão Preto, Brazil, 2012.