2509001223
  • Open Access
  • Article

Relative Contribution of Dermal Contact with Indoor Dust to Overall Human Exposure to Perfluoroalkyl Substances

  • Oddný Ragnarsdóttir 1, 2, *,   
  • Mohamed Abou-Elwafa Abdallah 1,   
  • Stuart Harrad 1

Received: 21 Jun 2025 | Revised: 01 Sep 2025 | Accepted: 02 Sep 2025 | Published: 15 Sep 2025

Abstract

Perfluoroalkyl substances (PFAS) have been quantified in household dust samples all over the world. This presents an exposure hazard via ingestion and dermal contact. Based on previously-reported bioaccessibility and bioavailability data, human dermal exposure to PFAS via dermal contact with indoor dust was estimated for the following six PFAS: C5-C8-perfluorocarboxylic acids (PFCAs), plus C4 and C7-perfluorosulfonic acids (PFSAs). Exposure for people from five countries (Sweden, Japan, Canada, Australia and Norway) was estimated and compared for two age groups (adults and toddlers) under two exposure scenarios (summer and winter). S6PFAS exposure via dermal uptake from dust during summer ranged from 25–767 pg/kg bw/week and 91–2761 pg/kg bw/week for adults and toddlers, respectively. In general, dermal uptake of PFAS from dust was 10 times lower in winter than in summertime. Perfluorohexanoic acid (PFHxA) made the highest contribution to dermal exposure to S6PFAS in all countries except Norway, where PFOA > PFHxA. Dermal exposure to S6PFAS via dermal contact with dust was compared to published exposure estimates via inhalation, indoor dust ingestion, and diet for a cohort of Norwegian adults for which temporally-consistent exposure data were available. Of our target PFAS, dermal exposure of this cohort via contact with dust was greatest for PFOA (2.1 pg/kg bw/day in summer), followed by PFHxA (1.4 pg/kg bw/day in summer). In general, dermal contact with dust did not contribute substantially to overall human exposure to PFSAs, compared to PFCAs. For PFCAs, dermal exposure is a potentially important pathway, with dermal exposure to dust alone contributing to similar levels of exposure as indoor air inhalation for certain compounds. Consequently, this pathway should not be dismissed in future exposure assessments, especially if other sources of dermal exposure to PFAS, e.g., personal care products and fabrics, are considered. 

References 

  • 1.
    Buck, R.C.; Franklin, J.; Berger, U.; et al. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. https://doi.org/10.1002/ieam.258.
  • 2.
    Glüge, J.; Scheringer, M.; Cousins, I.T.; et al. An Overview of the Uses of Per- and Polyfluoroalkyl Substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. https://doi.org/10.1039/D0EM00291G.
  • 3.
    EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Risk to Human Health Related to the Presence of Perfluoroalkyl Substances in Food. EFSA J. 2020, 18, 6223. https://doi.org/10.2903/j.efsa.2020.6223.
  • 4.
    Hansen, K.J.; Clemen, L.A.; Ellefson, M.E.; et al. Compound-Specific, Quantitative Characterization of Organic Fluorochemicals in Biological Matrices. Environ. Sci. Technol. 2001, 35, 766–770. https://doi.org/10.1021/es001489z.
  • 5.
    DeWitt, J.C.; Blossom, S.J.; Schaider, L.A. Exposure to Per-Fluoroalkyl and Polyfluoroalkyl Substances Leads to Immunotoxicity: Epidemiological and Toxicological Evidence. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 148–156. https://doi.org/10.1038/s41370-018-0097-y.
  • 6.
    Grandjean, P.; Heilmann, C.; Weihe, P.; et al. Estimated Exposures to Perfluorinated Compounds in Infancy Predict Attenuated Vaccine Antibody Concentrations at Age 5-Years. J. Immunotoxicol. 2017, 14, 188–195. https://doi.org/10.1080/1547691X.2017.1360968.
  • 7.
    Salihovic, S.; Stubleski, J.; Kärrman, A.; et al. Changes in Markers of Liver Function in Relation to Changes in Perfluoroalkyl Substances—A Longitudinal Study. Environ. Int. 2018, 117, 196–203. https://doi.org/10.1016/j.envint.2018.04.052.
  • 8.
    Sen, P.; Qadri, S.; Luukkonen, P.K.; et al. Exposure to Environmental Contaminants Is Associated with Altered Hepatic Lipid Metabolism in Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2022, 76, 283–293. https://doi.org/10.1016/j.jhep.2021.09.039.
  • 9.
    Meng, Q.; Inoue, K.; Ritz, B.; et al. Prenatal Exposure to Perfluoroalkyl Substances and Birth Outcomes; An Updated Analysis from the Danish National Birth Cohort. Int. J. Environ. Res. Public. Health 2018, 15, 1832. https://doi.org/10.3390/ijerph15091832.
  • 10.
    Sagiv, S.K.; Rifas-Shiman, S.L.; Fleisch, A.F.; et al. Early-Pregnancy Plasma Concentrations of Perfluoroalkyl Substances and Birth Outcomes in Project Viva: Confounded by Pregnancy Hemodynamics? Am. J. Epidemiol. 2018, 187, 793–802. https://doi.org/10.1093/aje/kwx332.
  • 11.
    Gebbink, W.A.; Berger, U.; Cousins, I.T. Estimating Human Exposure to PFOS Isomers and PFCA Homologues: The Relative Importance of Direct and Indirect (Precursor) Exposure. Environ. Int. 2015, 74, 160–169. https://doi.org/10.1016/j.envint.2014.10.013.
  • 12.
    Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; et al. A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Present Understanding of Health Effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. https://doi.org/10.1038/s41370-018-0094-1.
  • 13.
    Trudel, D.; Horowitz, L.; Wormuth, M.; et al. Estimating Consumer Exposure to PFOS and PFOA. Risk Anal. 2008, 28, 251–269. https://doi.org/10.1111/j.1539-6924.2008.01017.x.
  • 14.
    European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption; 2020/2184; 2020. Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed on 11 September 2025).
  • 15.
    Poothong, S.; Papadopoulou, E.; Padilla-Sánchez, J.A.; et al. Multiple Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs): From External Exposure to Human Blood. Environ. Int. 2020, 134, 105244. https://doi.org/10.1016/j.envint.2019.105244.
  • 16.
    Ragnarsdóttir, O.; Abdallah, M.A.-E.; Harrad, S. Dermal Uptake: An Important Pathway of Human Exposure to Perfluoroalkyl Substances? Environ. Pollut. 2022, 307, 119478. https://doi.org/10.1016/j.envpol.2022.119478.
  • 17.
    Wu, Y.; Romanak, K.; Bruton, T.; et al. Per- and polyfluoroalkyl substances in paired dust and carpets from childcare centers. Chemosphere 2020, 251, 126771. https://doi.org/10.1016/j.chemosphere.2020.126771.
  • 18.
    Abraham, K.; Monien, B.H. Transdermal Absorption of 13C4-Perfluorooctanoic Acid (13C4-PFOA) from a Sunscreen in a Male Volunteer—What Could Be the Contribution of Cosmetics to the Internal Exposure of Perfluoroalkyl Substances (PFAS)? Environ. Int. 2022, 169, 107549. https://doi.org/10.1016/j.envint.2022.107549.
  • 19.
    Chen, Q.; Yi, S.; Ye, Q.; et al. Insights into the Dermal Absorption, Deposition, and Elimination of Poly- and Perfluoroalkyl Substances in Rats: The Importance of Skin Exposure. Environ. Sci. Technol. 2022, 56, 16975–16984. https://doi.org/10.1021/acs.est.2c03181.
  • 20.
    Ragnarsdóttir, O.; Abou-Elwafa Abdallah, M.; Harrad, S. Dermal Bioavailability of Perfluoroalkyl Substances Using in Vitro 3D Human Skin Equivalent Models. Environ. Int. 2024, 188, 108772. https://doi.org/10.1016/j.envint.2024.108772.
  • 21.
    Kissel, J.C. The Mismeasure of Dermal Absorption. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 302–309. https://doi.org/10.1038/jes.2010.22.
  • 22.
    Fujii, Y.; Harada, K.H.; Koizumi, A. Occurrence of Perfluorinated Carboxylic Acids (PFCAs) in Personal Care Products and Compounding Agents. Chemosphere 2013, 93, 538–544. https://doi.org/10.1016/j.chemosphere.2013.06.049.
  • 23.
    Schultes, L.; Vestergren, R.; Volkova, K.; et al. Per- and Polyfluoroalkyl Substances and Fluorine Mass Balance in Cosmetic Products from the Swedish Market: Implications for Environmental Emissions and Human Exposure. Environ. Sci. Process. Impacts 2018, 20, 1680–1690. https://doi.org/10.1039/C8EM00368H.
  • 24.
    Whitehead, H.D.; Venier, M.; Wu, Y.; et al. Fluorinated Compounds in North American Cosmetics. Environ. Sci. Technol. Lett. 2021, 8, 538–544. https://doi.org/10.1021/acs.estlett.1c00240.
  • 25.
    van der Veen, I.; Hanning, A.-C.; Stare, A.; et al. The Effect of Weathering on Per- and Polyfluoroalkyl Substances (PFASs) from Durable Water Repellent (DWR) Clothing. Chemosphere 2020, 249, 126100. https://doi.org/10.1016/j.chemosphere.2020.126100.
  • 26.
    Wu, Y.; Miller, G.Z.; Gearhart, J.; et al. Side-Chain Fluorotelomer-Based Polymers in Children Car Seats. Environ. Pollut. 2021, 268, 115477. https://doi.org/10.1016/j.envpol.2020.115477.
  • 27.
    Xia, C.; Diamond, M.L.; Peaslee, G.F.; et al. Per- and Polyfluoroalkyl Substances in North American School Uniforms. Environ. Sci. Technol. 2022, 56, 13845–13857. https://doi.org/10.1021/acs.est.2c02111.
  • 28.
    Zhu, H.; Kannan, K. Total Oxidizable Precursor Assay in the Determination of Perfluoroalkyl Acids in Textiles Collected from the United States. Environ. Pollut. 2020, 265, 114940. https://doi.org/10.1016/j.envpol.2020.114940.
  • 29.
    Eriksson, U.; Kärrman, A. World-Wide Indoor Exposure to Polyfluoroalkyl Phosphate Esters (PAPs) and Other PFASs in Household Dust. Environ. Sci. Technol. 2015, 49, 14503–14511. https://doi.org/10.1021/acs.est.5b00679.
  • 30.
    Harrad, S.; Wemken, N.; Drage, D.S.; et al. Perfluoroalkyl Substances in Drinking Water, Indoor Air and Dust from Ireland: Implications for Human Exposure. Environ. Sci. Technol. 2019, 53, 13449–13457. https://doi.org/10.1021/acs.est.9b04604.
  • 31.
    Ertl, H.; Butte, W. Bioaccessibility of Pesticides and Polychlorinated Biphenyls from House Dust: In-Vitro Methods and Human Exposure Assessment. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 574–583. https://doi.org/10.1038/jes.2012.50.
  • 32.
    Pawar, G.; Abdallah, M.A.-E.; de Sáa, E.V.; et al. Dermal Bioaccessibility of Flame Retardants from Indoor Dust and the Influence of Topically Applied Cosmetics. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 100–105. https://doi.org/10.1038/jes.2015.84.
  • 33.
    Ruby, M.V.; Davis, A.; Schoof, R.; et al. Estimation of Lead and Arsenic Bioavailability Using a Physiologically Based Extraction Test. Environ. Sci. Technol. 1996, 30, 422–430. https://doi.org/10.1021/es950057z.
  • 34.
    Abdallah, M.A.-E.; Pawar, G.; Harrad, S. Evaluation of 3D-Human Skin Equivalents for Assessment of Human Dermal Absorption of Some Brominated Flame Retardants. Environ. Int. 2015, 84, 64–70. https://doi.org/10.1016/j.envint.2015.07.015.
  • 35.
    Abdallah, M.A.-E.; Tilston, E.; Harrad, S.; et al. In Vitro Assessment of the Bioaccessibility of Brominated Flame Retardants in Indoor Dust Using a Colon Extended Model of the Human Gastrointestinal Tract. J. Environ. Monit. 2012, 14, 3276. https://doi.org/10.1039/c2em30690e.
  • 36.
    Ragnarsdóttir, O.; Abdallah, M.A.-E.; Harrad, S. Dermal Bioaccessibility of Perfluoroalkyl Substances from Household Dust; Influence of Topically Applied Cosmetics. Environ. Res. 2023, 238, 117093. https://doi.org/10.1016/j.envres.2023.117093.
  • 37.
    Padilla-Sánchez, J.A.; Haug, L.S. A Fast and Sensitive Method for the Simultaneous Analysis of a Wide Range of Per- and Polyfluoroalkyl Substances in Indoor Dust Using on-Line Solid Phase Extraction-Ultrahigh Performance Liquid Chromatography-Time-of-Flight-Mass Spectrometry. J. Chromatogr. A 2016, 1445, 36–45. https://doi.org/10.1016/j.chroma.2016.03.058.
  • 38.
    U.S. EPA. Exposure Factors Handbook; U.S. EPA: Los Angeles, CA, USA, 2011.
  • 39.
    Luo, K.; Zeng, D.; Kang, Y.; et al. Dermal Bioaccessibility and Absorption of Polycyclic Aromatic Hydrocarbons (PAHs) in Indoor Dust and Its Implication in Risk Assessment. Environ. Pollut. 2020, 264, 114829. https://doi.org/10.1016/j.envpol.2020.114829.
  • 40.
    Zeng, D.; Kang, Y.; Chen, J.; et al. Dermal Bioaccessibility of Plasticizers in Indoor Dust and Clothing. Sci. Total Environ. 2019, 672, 798–805. https://doi.org/10.1016/j.scitotenv.2019.04.028.
  • 41.
    Abdallah, M.A.-E.; Harrad, S. Dermal Contact with Furniture Fabrics Is a Significant Pathway of Human Exposure to Brominated Flame Retardants. Environ. Int. 2018, 118, 26–33. https://doi.org/10.1016/j.envint.2018.05.027.
  • 42.
    Thépaut, E.; Dirven, H.A.A.M.; Haug, L.S.; et al. Per- and Polyfluoroalkyl Substances in Serum and Associations with Food Consumption and Use of Personal Care Products in the Norwegian Biomonitoring Study from the EU Project EuroMix. Environ. Res. 2021, 195, 110795. https://doi.org/10.1016/j.envres.2021.110795.
  • 43.
    Serrano, L.; Iribarne-Durán, L.M.; Suárez, B.; et al. Concentrations of Perfluoroalkyl Substances in Donor Breast Milk in Southern Spain and Their Potential Determinants. Int. J. Hyg. Environ. Health 2021, 236, 113796. https://doi.org/10.1016/j.ijheh.2021.113796.
  • 44.
    Greenpeace. Leaving Traces. The Hidden Hazardous Chemicals in Outdoor Gear. Greanpeace Product Test 2016; 2016. Available online: https://www.greenpeace.de/sites/www.greenpeace.de/files/publications/21_01_16_greenpeace_outdoor_report.pdf (accessed on 12 May 2025).
  • 45.
    Pütz, K.W.; Namazkar, S.; Plassmann, M.; et al. Are Cosmetics a Significant Source of PFAS in Europe? Product Inventories, Chemical Characterization and Emission Estimates. Environ. Sci. Process. Impacts 2022, 24, 1697–1707. https://doi.org/10.1039/D2EM00123C.
  • 46.
    Harris, K.J.; Munoz, G.; Woo, V.; et al. Targeted and Suspect Screening of Per- and Polyfluoroalkyl Substances in Cosmetics and Personal Care Products. Environ. Sci. Technol. 2022, 56, 14594–14604. https://doi.org/10.1021/acs.est.2c02660.
Share this article:
How to Cite
Ragnarsdóttir, O.; Abdallah, M. A.-E.; Harrad, S. Relative Contribution of Dermal Contact with Indoor Dust to Overall Human Exposure to Perfluoroalkyl Substances. Environmental Contamination: Causes and Solutions 2025, 1 (1), 5. https://doi.org/10.53941/eccs.2025.100005.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.