- 1.
Ho, C.S.; Wong, C.T.; Aung, T.T.; et al. Antimicrobial resistance: A concise update. Lancet Microbe 2025, 6, 100947.
- 2.
O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Wellcome Trust: London, UK, 2016.
- 3.
Collaborators, A.R. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655.
- 4.
Organization, W.H. Global Strategy and Action Plan on Oral Health 2023–2030; World Health Organization: Geneva, Switzerland, 2024.
- 5.
Jonas, O.B.; Irwin, A.; Berthe, F.C.J.; et al. Drug-resistant infections: A threat to our economic future. World Rep. 2017, 2, 1–132.
- 6.
Browne, A.J.; Chipeta, M.G.; Haines-Woodhouse, G.; et al. Global antibiotic consumption and usage in humans, 2000–2018: A spatial modelling study. Lancet Health 2021, 5, e893–e904.
- 7.
Porter, G.; Kotwani, A.; Bhullar, L.; et al. Over-the-counter sales of antibiotics for human use in India: The challenges and opportunities for regulation. Law. Int. 2021, 21, 147–173.
- 8.
Van Boeckel, T.P.; Brower, C.; Gilbert, M.; et al. Global trends in antimicrobial use in food animals. Natl. Acad. Sci. USA 2015, 112, 5649–5654.
- 9.
Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; et al. Reducing antimicrobial use in food animals. Science 2017, 357, 1350–1352.
- 10.
Mullard, A. 2023 FDA approvals. Rev. Drug Discov. 2024, 23, 88–95.
- 11.
Valiakos, G.; Kapna, I. Colistin resistant mcr genes prevalence in livestock animals (swine, bovine, poultry) from a multinational perspective. A systematic review. Sci. 2021, 8, 265.
- 12.
Van Bavel, B.; Berrang-Ford, L.; Moon, K.; et al. Intersections between climate change and antimicrobial resistance: A systematic scoping review. Lancet Health 2024, 8, e1118–e1128.
- 13.
Von Wintersdorff, C.J.; Penders, J.; Van Niekerk, J.M.; et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Microbiol. 2016, 7, 173.
- 14.
Pärnänen, K.M.; Narciso-da-Rocha, C.; Kneis, D.; et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Adv. 2019, 5, eaau9124.
- 15.
Foysal, M.J.; Neilan, B.A.; Timms, V. The impact of anthropogenic activities on antimicrobial and heavy metal resistance in aquatic environments. Environ. Microbiol. 2025, 91, e02317-24.
- 16.
Ding, Y.; Hao, J.; Xiao, W.; et al. Role of efflux pumps, their inhibitors, and regulators in colistin resistance. Microbiol. 2023, 14, 1207441.
- 17.
Cabral, D.J.; Wurster, J.I.; Belenky, P. Antibiotic persistence as a metabolic adaptation: Stress, metabolism, the host, and new directions. Pharmaceuticals 2018, 11, 14.
- 18.
Barman, S.; Kurnaz, L.B.; Leighton, R.; et al. Intrinsic antimicrobial resistance: Molecular biomaterials to combat microbial biofilms and bacterial persisters. Biomaterials 2024, 311, 122690.
- 19.
Zaidi, S.; Ali, K.; Khan, A.U. It’s all relative: Analyzing microbiome compositions, its significance, pathogenesis and microbiota derived biofilms: Challenges and opportunities for disease intervention. Microbiol. 2023, 205, 257.
- 20.
Ferreira, M.; Sousa, C.F.; Gameiro, P. Fluoroquinolone Metalloantibiotics to Bypass Antimicrobial Resistance Mechanisms: Decreased Permeation through Porins. Membranes 2020, 11, 3.
- 21.
Miguel-Arribas, A.; Wu, L.J.; Michaelis, C.; et al. Conjugation operons in Gram-positive bacteria with and without antitermination systems. Microorganisms 2022, 10, 587.
- 22.
Hinnekens, P.; Fayad, N.; Gillis, A.; et al. Conjugation across Bacillus cereus and kin: A review. Microbiol. 2022, 13, 1034440.
- 23.
Johnsborg, O.; Eldholm, V.; Håvarstein, L.S. Natural genetic transformation: Prevalence, mechanisms and function. Microbiol. 2007, 158, 767–778.
- 24.
Durrant, M.G.; Li, M.M.; Siranosian, B.A.; et al. A bioinformatic analysis of integrative mobile genetic elements highlights their role in bacterial adaptation. Cell Host Microbe 2020, 27, 140–153.e9.
- 25.
Peng, K.; Liu, Y.X.; Sun, X.; et al. Long-read metagenomic sequencing reveals that high-copy small plasmids shape the highly prevalent antibiotic resistance genes in animal fecal microbiome. Total Environ. 2023, 893, 164585.
- 26.
Blake, K.S.; Choi, J.; Dantas, G. Approaches for characterizing and tracking hospital-associated multidrug-resistant bacteria. Mol. Life Sci. 2021, 78, 2585–2606.
- 27.
Bonomo, R.A. β-Lactamases: A focus on current challenges. Cold Spring Perspect. Med. 2017, 7, a025239.
- 28.
Cui, C.Y.; He, Q.; Jia, Q.L.; et al. Evolutionary trajectory of the Tet (X) family: Critical residue changes towards high-level tigecycline resistance. Msystems 2021, 6, 00050-21.
- 29.
Sun, L.; Sun, L.; Li, X.; et al. A novel tigecycline adjuvant ML-7 reverses the susceptibility of tigecycline-resistant Klebsiella pneumoniae. Cell. Infect. Microbiol. 2022, 11, 809542.
- 30.
Lade, H.; Kim, J.-S. Molecular determinants of β-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA): An updated review. Antibiotics 2023, 12, 1362.
- 31.
Svetlov, M.S.; Syroegin, E.A.; Aleksandrova, E.V.; et al. Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance. Chem. Biol. 2021, 17, 412–420.
- 32.
Guffey, A.A.; Loll, P.J. Regulation of resistance in vancomycin-resistant enterococci: The VanRS two-component system. Microorganisms 2021, 9, 2026.
- 33.
O'Toole, R.F.; Leong, K.W.; Cumming, V.; et al. Vancomycin-resistant Enterococcus faecium and the emergence of new sequence types associated with hospital infection. Microbiol. 2023, 174, 104046.
- 34.
Rodríguez-Martínez, J.M.; Cano, M.E.; Velasco, C.; et al. Plasmid-mediated quinolone resistance: An update. Infect. Chemother. 2011, 17, 149–182.
- 35.
Mingardon, F.; Clement, C.; Hirano, K. Improving olefin tolerance and production in E. coli using native and evolved AcrB. Bioeng. 2015, 112, 879–888.
- 36.
Masuda, N.; Sakagawa, E.; Ohya, S.; et al. Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa. Agents Chemother. 2000, 44, 3322–3327.
- 37.
Kumar, S.; Floyd, J.T.; He, G.; et al. Bacterial antimicrobial efflux pumps of the MFS and MATE transporter families: A review. Res. Dev. Antimicrob. Agents Chemother. 2013, 7, 1–21.
- 38.
Biswas, R.; et al. Overview on the role of heavy metals tolerance on developing antibiotic resistance in both Gram-negative and Gram-positive bacteria. Microbiol. 2021, 203, 2761–2770.
- 39.
Wales, A.D.; Davies, R.H. Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens. Antibiotics 2015, 4, 567–604.
- 40.
Davies, R.; Wales, A. Antimicrobial resistance on farms: A review including biosecurity and the potential role of disinfectants in resistance selection. Rev. Food Sci. Food Saf. 2019, 18, 753–774.
- 41.
Wang, D.; Ning, Q.; Deng, Z.; et al. Role of environmental stresses in elevating resistance mutations in bacteria: Phenomena and mechanisms. Pollut. 2022, 307, 119603.
- 42.
Mo, C.Y.; Manning, S.A.; Roggiani, M.; et al. Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics. MSphere 2016, 1, 00163–16.
- 43.
Abdullah, S.; Almusallam, A.; Li, M.; et al. Whole genome-based genetic insights of bla NDM producing clinical E. coli isolates in hospital settings of Pakistant. Spectr. 2023, 11, e00584-23.
- 44.
Moses, I.B.; Santos, F.F.; Gales, A.C. Human colonization and infection by Staphylococcus pseudintermedius: An emerging and underestimated zoonotic pathogen. Microorganisms 2023, 11, 581.
- 45.
Cave, R.; Ter-Stepanyan, M.M.; Mkrtchyan, H.V. Short-and Long-Read Sequencing Reveals the Presence and Evolution of an IncF Plasmid Harboring bla CTX-M-15 and bla CTX-M-27 Genes in Escherichia coli ST131. Spectr. 2023, 11, e00356-23.
- 46.
Fuentes-Castillo, D.; Castro-Tardón, D.; Esposito, F.; et al. Genomic evidences of gulls as reservoirs of critical priority CTX-M-producing Escherichia coli in Corcovado Gulf, Patagonia. Total Environ. 2023, 874, 162564.
- 47.
Rodó, X.; Pozdniakova, S.; Borràs, S.; et al. Microbial richness and air chemistry in aerosols above the PBL confirm 2,000-km long-distance transport of potential human pathogens. Natl. Acad. Sci. USA 2024, 121, e2404191121.
- 48.
Cassini, A.; Högberg, L.D.; Plachouras, D.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Dis. 2019, 19, 56–66.
- 49.
MacFadden, D.R.; McGough, S.F.; Fisman, D.; et al. Antibiotic resistance increases with local temperature. Clim. Chang. 2018, 8, 510–514.
- 50.
Roope, L.S.; Smith, R.D.; Pouwels, K.B.; et al. The challenge of antimicrobial resistance: What economics can contribute. Science 2019, 364, eaau4679.
- 51.
Stewardson, A.J.; Marimuthu, K.; Sengupta, S.; et al. Effect of carbapenem resistance on outcomes of bloodstream infection caused by Enterobacteriaceae in low-income and middle-income countries (PANORAMA): A multinational prospective cohort study. Lancet Dis. 2019, 19, 601–610.
- 52.
Iwashyna, T.J.; Ely, E.W.; Smith, D.M.; et al. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 2010, 304, 1787–1794.
- 53.
Prescott, H.C.; Angus, D.C. Enhancing recovery from sepsis: A review. JAMA 2018, 319, 62–75.
- 54.
Hatch, R.; Young, D.; Barber, V.; et al. Anxiety, depression and post traumatic stress disorder after critical illness: A UK-wide prospective cohort study. Care 2018, 22, 310.
- 55.
Nelson, R.E.; Hyun, D.; Jezek, A.; et al. Mortality, length of stay, and healthcare costs associated with multidrug-resistant bacterial infections among elderly hospitalized patients in the United States. Infect. Dis. 2022, 74, 1070–1080.
- 56.
Venkatesan, P. WHO 2020 report on the antibacterial production and development pipeline. Lancet Microbe 2021, 2, e239.
- 57.
Furlan, J.P.R.; Sellera, F.P.; Lincopan, N.; et al. Catastrophic floods and antimicrobial resistance: Interconnected threats with wide-ranging impacts. One Health 2024, 19, 100891.
- 58.
Dabo, S.; Taylor, J.; Confer, A. Pasteurella multocida and bovine respiratory disease. Health Res. Rev. 2007, 8, 129–150.
- 59.
Snyder, E.; Credille, B. Mannheimia haemolytica and Pasteurella multocida in bovine respiratory disease: How are they changing in response to efforts to control them? Clin. Food Anim. Pract. 2020, 36, 253–268.
- 60.
Ström, G.H.; Björklund, H.; Barnes, A.C.; et al. Antibiotic use by small-scale farmers for freshwater aquaculture in the Upper Mekong Delta, Vietnam. Aquat. Anim. Health 2019, 31, 290–298.
- 61.
Ofori, S.; Di Leto, Y.; Smrčková, Š.; et al. Treated wastewater reuse for crop irrigation: A comprehensive health risk assessment. Sci. Adv. 2025, 4, 252–269.
- 62.
Ahmed, S.; Ahmed, M.W.; Hasan, M.Z.; et al. Assessing the incidence of catastrophic health expenditure and impoverishment from out-of-pocket payments and their determinants in Bangladesh: Evidence from the nationwide Household Income and Expenditure Survey 2016. Health 2022, 14, 84–96.
- 63.
Molla, A.A.; Chi, C. Who pays for healthcare in Bangladesh? An analysis of progressivity in health systems financing. J. Equity Health 2017, 16, 1–10.
- 64.
Bhuiyan, M.U.; Luby, S.P.; Alamgir, N.I.; et al. Costs of hospitalization with respiratory syncytial virus illness among children aged< 5 years and the financial impact on households in Bangladesh, 2010. Glob. Health 2017, 7, 010412.
- 65.
Greene, J.; Samuel-Jakubos, H. Building patient trust in hospitals: A combination of hospital-related factors and health care clinician behaviors. Comm. J. Qual. Patient Saf. 2021, 47, 768–774.
- 66.
Abu-Rub, L.I.; Abdelrahman, H.A.; Johar, A.R.A.; et al. Antibiotics prescribing in intensive care settings during the COVID-19 era: A systematic review. Antibiotics 2021, 10, 935.
- 67.
Langford, B.J.; Leung, V.; Lo, J.; et al. Antibiotic prescribing guideline recommendations in COVID-19: A systematic survey. Eclinicalmedicine 2023, 65,
- 68.
Petazzoni, G.; Bellinzona, G.; Merla, C.; et al. The COVID-19 pandemic sparked off a large-scale outbreak of carbapenem-resistant Acinetobacter baumannii from the endemic strains at an Italian hospital. Spectr. 2023, 11, e04505-22.
- 69.
Embracing a One Health Framework to Fight Antimicrobial Resistance; OECD Publishing: Paris, France, 2023.
- 70.
Vankelegom, M.; Burke, D.; Mohammed, A.M.F.; et al. Cost-effectiveness of a rapid point-of-care test for diagnosing patients with suspected bloodstream infection in Ireland. Med. Unlocked 2022, 32, 101056.
- 71.
Lewnard, J.A.; Charani, E.; Gleason, A.; et al. Burden of bacterial antimicrobial resistance in low-income and middle-income countries avertible by existing interventions: An evidence review and modelling analysis. Lancet 2024, 403, 2439–2454.
- 72.
Haenelt, S.; Wang, G.; Kasmanas, J.C.; et al. The fate of sulfonamide resistance genes and anthropogenic pollution marker intI1 after discharge of wastewater into a pristine river stream. Microbiol. 2023, 14, 1058350.
- 73.
Hendriksen, R.S.; Munk, P.; Njage, P.; et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Commun. 2019, 10, 1124.
- 74.
Wang, H.; Song, J.; Yan, M.; et al. Waste lignin-based cationic flocculants treating dyeing wastewater: Fabrication, performance, and mechanism. Total Environ. 2023, 874, 162383.
- 75.
Riechel, M.; Matzinger, A.; Pawlowsky-Reusing, E.; et al. Impacts of combined sewer overflows on a large urban river–Understanding the effect of different management strategies. Water 2016, 105, 264–273.
- 76.
Frey, S.K.; Topp, E.; Khan, I.U.; et al. Quantitative Campylobacter spp., antibiotic resistance genes, and veterinary antibiotics in surface and ground water following manure application: Influence of tile drainage control. Total Environ. 2015, 532, 138–153.
- 77.
Tian, H.; Liu, J.; Sun, J.; et al. Cross-media migration behavior of antibiotic resistance genes (ARGs) from municipal wastewater treatment systems (MWTSs): Fugitive characteristics, sharing mechanisms, and aerosolization behavior. Total Environ. 2023, 893, 164710.
- 78.
Drane, K.; Sheehan, M.; Whelan, A.; et al. The role of wastewater treatment plants in dissemination of antibiotic resistance: Source, measurement, removal and risk assessment. Antibiotics 2024, 13, 668.
- 79.
Zhang, L.; Adyari, B.; Hou, L.; et al. Mass-immigration shapes the antibiotic resistome of wastewater treatment plants. Total Environ. 2024, 908, 168193.
- 80.
Mulchandani, R.; Wang, Y.; Gilbert, M.; et al. Global trends in antimicrobial use in food-producing animals: 2020 to 2030. PLOS Public Health 2023, 3, e0001305.
- 81.
Tiseo, K.; Huber, L.; Gilbert, M.; et al. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 2020, 9, 918.
- 82.
Wang, Z.; Lu, Q.; Mao, X.; et al. Prevalence of extended-Spectrum β-lactamase-resistant genes in Escherichia coli isolates from Central China during 2016–2019. Animals 2022, 12, 3191.
- 83.
Yang, J.T.; Zhang, L.J.; Lu, Y.; et al. Genomic insights into global bla CTX-M-55-positive Escherichia coli epidemiology and transmission characteristics. Spectr. 2023, 11, e01089-23.
- 84.
Caracciolo, A.B.; Visca, A.; Rauseo, J.; et al. Bioaccumulation of antibiotics and resistance genes in lettuce following cattle manure and digestate fertilization and their effects on soil and phyllosphere microbial communities. Pollut. 2022, 315, 120413.
- 85.
Sanz, C.; Casado, M.; Navarro-Martin, L.; et al. Implications of the use of organic fertilizers for antibiotic resistance gene distribution in agricultural soils and fresh food products. A plot-scale study. Total Environ. 2022, 815, 151973.
- 86.
Liu, Z.T.; Ma, R.A.; Zhu, D.; et al. Organic fertilization co-selects genetically linked antibiotic and metal (loid) resistance genes in global soil microbiome. Commun. 2024, 15, 5168.
- 87.
Amarasekara, N.R.; Mafiz, A.I.; Qian, X.; et al. Exploring the co-occurrence of antibiotic, metal, and biocide resistance genes in the urban agricultural environment. Agric. Food Res. 2023, 11, 100474.
- 88.
Kim, D.-H.; Oh, S.-E. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions. Waste 2011, 31, 1943–1948.
- 89.
Ritchie, H.; Spooner, F. Large Amounts of Antibiotics Are Used in Livestock, but Several Countries Have Shown This Doesn’t Have to Be the Case; Our World in Data: Oxford, UK,
- 90.
Wang, Y.-X.; Sun, Y.; Huang, Z.; et al. Associations of urinary metal levels with serum hormones, spermatozoa apoptosis and sperm DNA damage in a Chinese population. Int. 2016, 94, 177–188.
- 91.
Larsson, D.J.; de Pedro, C.; Paxeus, N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Hazard. Mater. 2007, 148, 751–755.
- 92.
Li, J.; Cao, J.; Zhu, Y.G.; et al. Global survey of antibiotic resistance genes in air. Sci. Technol. 2018, 52, 10975–10984.
- 93.
Mesquita, E.; Ribeiro, R.; Silva, C.J.; et al. An update on wastewater multi-resistant bacteria: Identification of clinical pathogens such as Escherichia coli O25b: H4-B2-ST131-producing CTX-M-15 ESBL and KPC-3 carbapenemase-producing Klebsiella oxytoca. Microorganisms 2021, 9, 576.
- 94.
Pilote, J.; Létourneau, V.; Girard, M.; et al. Quantification of airborne dust, endotoxins, human pathogens and antibiotic and metal resistance genes in Eastern Canadian swine confinement buildings. Aerobiologia 2019, 35, 283–296.
- 95.
Kormos, D.; Lin, K.; Pruden, A.; et al. Critical review of antibiotic resistance genes in the atmosphere. Sci. Process. Impacts 2022, 24, 870–883.
- 96.
Hellberg, R.S.; Haney, C.J.; Shen, Y.; et al. Development of a custom 16S rRNA gene library for the identification and molecular subtyping of Salmonella enterica. Microbiol. Methods 2012, 91, 448–458.
- 97.
Zhou, J.; He, Z.; Yang, Y.; et al. High-throughput metagenomic technologies for complex microbial community analysis: Open and closed formats. MBio 2015, 6, 02288-14.
- 98.
Forsberg, K.J.; Reyes, A.; Wang, B.; et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012, 337, 1107–1111.
- 99.
Kuleshov, V.; Jiang, C.; Zhou, W.; et al. Synthetic long-read sequencing reveals intraspecies diversity in the human microbiome. Biotechnol. 2016, 34, 64–69.
- 100.
Brito, I.L.; Yilmaz, S.; Huang, K.; et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 2016, 535, 435–439.
- 101.
Humphries, R.; Bobenchik, A.M.; Hindler, J.A.; et al. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. Clin. Microbiol. 2021, 59, 00213-21.
- 102.
Hachich, E.M.; Di Bari, M.; Christ, A.P.G.; et al. Comparison of thermotolerant coliforms and Escherichia coli densities in freshwater bodies. J. Microbiol. 2012, 43, 675–681.
- 103.
Athamanolap, P.; Hsieh, K.; Chen, L.; et al. Integrated bacterial identification and antimicrobial susceptibility testing using PCR and high-resolution melt. Chem. 2017, 89, 11529–11536.
- 104.
Li, B.; Yan, T. Next generation sequencing reveals limitation of qPCR methods in quantifying emerging antibiotic resistance genes (ARGs) in the environment. Microbiol. Biotechnol. 2021, 105, 2925–2936.
- 105.
Kojabad, A.A.; Farzanehpour, M.; Galeh, H.E.G.; et al. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. Med. Virol. 2021, 93, 4182–4197.
- 106.
Cavé, L.; Brothier, E.; Abrouk, D.; et al. Efficiency and sensitivity of the digital droplet PCR for the quantification of antibiotic resistance genes in soils and organic residues. Microbiol. Biotechnol. 2016, 100, 10597–10608.
- 107.
Hoshino, T.; Inagaki, F. Molecular quantification of environmental DNA using microfluidics and digital PCR. Appl. Microbiol. 2012, 35, 390–395.
- 108.
Hindson, B.J.; Ness, K.D.; Masquelier, D.A.; et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Chem. 2011, 83, 8604–8610.
- 109.
Avesar, J.; Rosenfeld, D.; Truman-Rosentsvit, M.; et al. Rapid phenotypic antimicrobial susceptibility testing using nanoliter arrays. Natl. Acad. Sci. USA 2017, 114, E5787–E5795.
- 110.
Ma, J.; Wang, J.; Yang, H.; et al. IncHI1 plasmids mediated the tet (X4) gene spread in Enterobacteriaceae in porcine. Microbiol. 2023, 14, 1128905.
- 111.
Mohsin, M.; Hassan, B.; Martins, W.M.; et al. Emergence of plasmid-mediated tigecycline resistance tet (X4) gene in Escherichia coli isolated from poultry, food and the environment in South Asia. Total Environ. 2021, 787, 147613.
- 112.
Stalder, T.; Press, M.O.; Sullivan, S.; et al. Linking the resistome and plasmidome to the microbiome. ISME 2019, 13, 2437–2446.
- 113.
Kalmar, L.; Gupta, S.; Kean, I.R.; et al. HAM-ART: An optimised culture-free Hi-C metagenomics pipeline for tracking antimicrobial resistance genes in complex microbial communities. PLoS 2022, 18, e1009776.
- 114.
Spencer, S.J.; Tamminen, M.V.; Preheim, S.P.; et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME 2016, 10, 427–436.
- 115.
Liu, S.; Dai, S.; Deng, Y.; et al. Long-read epicPCR enhances species-level host identification of clinically relevant antibiotic resistance genes in environmental microbial communities. Int. 2025, 197, 109337.
- 116.
Yin, X.; Jiang, X.T.; Chai, B.; et al. ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics 2018, 34, 2263–2270.
- 117.
Bortolaia, V.; Kaas, R.S.; Ruppe, E.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. Antimicrob. Chemother. 2020, 75, 3491–3500.
- 118.
Blaak, H.; Kemper, M.A.; de Man, H.; et al. Nationwide surveillance reveals frequent detection of carbapenemase-producing Enterobacterales in Dutch municipal wastewater. Total Environ. 2021, 776, 145925.
- 119.
Knight, M.E.; Webster, G.; Perry, W.B.; et al. National-scale antimicrobial resistance surveillance in wastewater: A comparative analysis of HT qPCR and metagenomic approaches. Water Res. 2024, 262, 121989.
- 120.
Cansdale, A.; Chong, J.P. MAGqual: A stand-alone pipeline to assess the quality of metagenome-assembled genomes. Microbiome 2024, 12, 226.
- 121.
Behavioural Economics Team of the Australian Government (BETA). Nudge vs. Superbugs: 12 Months on, DoH; Behavioural Economics Team of the Australian Government (BETA): Barton, ACT, Australia, 2020.
- 122.
Dupont, N.; Diness, L.H.; Fertner, M.; et al. Antimicrobial reduction measures applied in Danish pig herds following the introduction of the “Yellow Card” antimicrobial scheme. Vet. Med. 2017, 138, 9–16.
- 123.
Unicomb, L.E.; Nizame, F.A.; Uddin, M.R.; et al. Motivating antibiotic stewardship in Bangladesh: Identifying audiences and target behaviours using the behaviour change wheel. BMC Health 2021, 21, 968.
- 124.
Zhang, X.Y.; Liu, T.S.; Hu, J.Y. Antibiotics removal and antimicrobial resistance control by ozone/peroxymonosulfate-biological activated carbon: A novel treatment process. Water 2024, 261, 122069.
- 125.
Hodges, J.C.; Bilderback, A.L.; Bridge, C.M.; et al. Assessment of the effectiveness of ultraviolet-C disinfection on transmission of hospital-acquired pathogens from prior room occupants. Steward. Healthc. Epidemiol. 2022, 2, e110.
- 126.
Liu, Y.; Matsuyama, H.; Jin, P.; et al. Tailored design of nanofiltration membrane for endocrine disrupting compounds removal: Mechanisms, current advancements, and future perspectives. Purif. Technol. 2025, 361, 131471.