2507001017
  • Open Access
  • Review
Data-Driven Innovations in Flood Hazard Assessment with Machine Learning
  • Jiawen Zhang 1,   
  • Wenshan Guo 1,   
  • Soon Woong Chang 2,   
  • Dinh Duc Nguyen 2,   
  • Huu Hao Ngo 1, *

Received: 29 Apr 2025 | Revised: 09 Jul 2025 | Accepted: 23 Jul 2025 | Published: 29 Jul 2025

Abstract

Floods, as natural disasters, have a profound impact on society. Assessing them is highly complex due to the interplay of factors such as meteorology, topography, and land cover. Accurate forecasting is essential to reduce disaster risks, guide emergency response strategies, and minimize economic and social losses. Recent advancements in machine learning have significantly improved the accuracy of flood predictions, offered more cost-effective solutions and enhanced decision-making processes. This paper reviews the most common and recent advancements in machine learning applications for flood hazard assessment and forecasting and compares their performance with traditional approaches such as numerical modelling and remote sensing. While numerical models provide detailed predictions, they are computationally demanding and depend on precise data inputs. While remote sensing provides valuable large-scale data for flood monitoring, it often faces limitations in real-time responsiveness and accuracy, particularly under rapidly changing flood conditions. Machine learning addresses these limitations by leveraging historical data to identify patterns and refine predictions, improving both accuracy and efficiency. Challenges such as the variability of model performance across different regions and the requirement for high-quality data remain. This paper explores both long-term and short-term flood forecasting and the hazard assessment, shows that combining different methods in hybrid models can improve accuracy by reducing data uncertainties. Future research should prioritize refining machine learning algorithms for diverse environments, improving data processing techniques, and developing integrated methodologies. These advancements will lead to more reliable flood predictions, ultimately helping to mitigate the risks and impacts of flood disasters.

Graphical Abstract

References 

  • 1.
    Refadah, S.S. Development in Flood Forecasting: A Comprehensive Review of Complex and Machine Learning Models. Phys. Chem. Earth Parts A/B/C 2025, 139, 103975. https://doi.org/10.1016/j.pce.2025.103975.
  • 2.
    Iosub, M.; Enea, A. Flood Early Warning and Risk Modelling. Hydrology 2022, 9, 57. https://doi.org/10.3390/hydrology9040057.
  • 3.
    Rupngam, T.; Messiga, A.J. Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a Changing Climate. Sustainability 2024, 16, 6141. https://doi.org/10.3390/su16146141.
  • 4.
    Yang, S.-N.; Chang, L.-C. Regional Inundation Forecasting Using Machine Learning Techniques with the Internet of Things. Water 2020, 12, 1578. https://doi.org/10.3390/w12061578.
  • 5.
    Meresa, H.; Tischbein, B.; Mekonnen, T. Climate Change Impact on Extreme Precipitation and Peak Flood Magnitude and Frequency: Observations from CMIP6 and Hydrological Models. Nat. Hazards 2022, 111, 2649–2679. https://doi.org/10.1007/s11069-021-05152-3.
  • 6.
    Merz, B.; Kreibich, H.; Schwarze, R.; et al. Review Article “Assessment of Economic Flood Damage”. Nat. Hazards Earth Syst. Sci. 2010, 10, 1697–1724. https://doi.org/10.5194/nhess-10-1697-2010.
  • 7.
    Redondo-Tilano, S.A. Emerging Strategies for Addressing Flood-Damage Modeling Issues: A Review. Int. J. Disaster Risk Reduct. 2025, 116, 105058.
  • 8.
    Kumar, V.; Sharma, K.V.; Mangukiya, N.K.; et al. Machine Learning Applications in Flood Forecasting and Predictions, Challenges, and Way-out in the Perspective of Changing Environment. AIMSES 2025, 12, 72–105. https://doi.org/10.3934/environsci.2025004.
  • 9.
    Grigg, N.S. Comprehensive Flood Risk Assessment: State of the Practice. Hydrology 2023, 10, 46. https://doi.org/10.3390/hydrology10020046.
  • 10.
    Todini, E. Flood Forecasting and Decision Making in the New Millennium. Where Are We? Water Resour. Manag. 2017, 31, 3111–3129. https://doi.org/10.1007/s11269-017-1693-7.
  • 11.
    Wright, D.B.; Yu, G.; England, J.F. Six Decades of Rainfall and Flood Frequency Analysis Using Stochastic Storm Transposition: Review, Progress, and Prospects. J. Hydrol. 2020, 585, 124816. https://doi.org/10.1016/j.jhydrol.2020.124816.
  • 12.
    Chatrabhuj; Meshram, K.; Mishra, U.; Omar, P.J. Integration of Remote Sensing Data and GIS Technologies in River Management System. Discov. Geosci. 2024, 2, 67. https://doi.org/10.1007/s44288-024-00080-8.
  • 13.
    Chu, H.; Wu, W.; Wang, Q.J.; et al. An ANN-Based Emulation Modelling Framework for Flood Inundation Modelling: Application, Challenges and Future Directions. Environ. Model. Softw. 2020, 124, 104587. https://doi.org/10.1016/j.envsoft.2019.104587.
  • 14.
    Li, X.; Dellinger, G.; Erpicum, S.; et al. 2D and 3D Computational Modeling of Surface Flooding in Urbanized Floodplains: Modeling Performance for Various Building Layouts. Water Resour. Res. 2024, 60, e2023WR035149. https://doi.org/10.1029/2023wr035149.
  • 15.
    Rehman, S.; Sahana, M.; Hong, H.; et al. A Systematic Review on Approaches and Methods Used for Flood Vulnerability Assessment: Framework for Future Research. Nat. Hazards 2019, 96, 975–998. https://doi.org/10.1007/s11069-018-03567-z.
  • 16.
    Tabasi, N.; Fereshtehpour, M.; Roghani, B. A Review of Flood Risk Assessment Frameworks and the Development of Hierarchical Structures for Risk Components. Discov. Water 2025, 5, 10. https://doi.org/10.1007/s43832-025-00193-2.
  • 17.
    Machine Learning for Big Data Analytics. In Big Data Analytics; Springer Nature: Cham, Switzerland, 2024; pp. 193–231; ISBN 978-3-031-55638-8.
  • 18.
    Adekunle, B.I.; Chukwuma-Eke, E.C.; Balogun, E.D.; et al. Machine Learning for Automation: Developing Data-Driven Solutions for Process Optimization and Accuracy Improvement. IJMRGE 2021, 3, 800–808. https://doi.org/10.54660/.ijmrge.2021.2.1.800-808.
  • 19.
    Karim, F.; Armin, M.A.; Ahmedt-Aristizabal, D.; et al. A Review of Hydrodynamic and Machine Learning Approaches for Flood Inundation Modeling. Water 2023, 15, 566. https://doi.org/10.3390/w15030566.
  • 20.
    Keum, H.J.; Han, K.Y.; Kim, H.I. Real-Time Flood Disaster Prediction System by Applying Machine Learning Technique. KSCE J. Civ. Eng. 2020, 24, 2835–2848. https://doi.org/10.1007/s12205-020-1677-7.
  • 21.
    Clegg, G.; Haigh, R.; Amaratunga, D. Towards an Improved Understanding of Participation in Natural Hazard Early Warning Systems. IJDRBE 2022, 13, 615–631. https://doi.org/10.1108/IJDRBE-11-2020-0120.
  • 22.
    Cerqueira, V.; Torgo, L.; Soares, C. A Case Study Comparing Machine Learning with Statistical Methods for Time Series Forecasting: Size Matters. J. Intell. Inf. Syst. 2022, 59, 415–433. https://doi.org/10.1007/s10844-022-00713-9.
  • 23.
    Bejani, M.M.; Ghatee, M. A Systematic Review on Overfitting Control in Shallow and Deep Neural Networks. Artif. Intell. Rev. 2021, 54, 6391–6438. https://doi.org/10.1007/s10462-021-09975-1.
  • 24.
    Xu, Y.; Lin, K.; Hu, C.; et al. Deep Transfer Learning Based on Transformer for Flood Forecasting in Data-Sparse Basins. J. Hydrol. 2023, 625, 129956. https://doi.org/10.1016/j.jhydrol.2023.129956.
  • 25.
    Hasan, M.; Rabbi, M.F.; Hamja, M.A.; et al. Enhancing Flood Forecasting Performance Using Effective and Transparent Explainable Hybrid Deep Learning Model. Earth Sci. Inf. 2025, 18, 417. https://doi.org/10.1007/s12145-025-01930-w.
  • 26.
    Luo, Y.; Yin, L.; Bai, W.; et al. An Appraisal of Incremental Learning Methods. Entropy 2020, 22, 1190. https://doi.org/10.3390/e22111190.
  • 27.
    Mumuni, A.; Mumuni, F. Automated Data Processing and Feature Engineering for Deep Learning and Big Data Applications: A Survey. J. Inf. Intell. 2025, 3, 113–153. https://doi.org/10.1016/j.jiixd.2024.01.002.
  • 28.
    Kawaguchi, K.; Kaelbling, L.P.; Bengio, Y. Generalization in Deep Learning. arXiv 2017, arXiv:1710.05468. https://doi.org/10.48550/ARXIV.1710.05468.
  • 29.
    Carabantes, M. Black-Box Artificial Intelligence: An Epistemological and Critical Analysis. AI Soc. 2020, 35, 309–317. https://doi.org/10.1007/s00146-019-00888-w.
  • 30.
    Sit, M.; Demiray, B.Z.; Xiang, Z.; et al. A Comprehensive Review of Deep Learning Applications in Hydrology and Water Resources. Water Sci. Technol. 2020, 82, 2635–2670. https://doi.org/10.2166/wst.2020.369.
  • 31.
    Overfitting, Model Tuning, and Evaluation of Prediction Performance. In Multivariate Statistical Machine Learning Methods for Genomic Prediction; Springer International Publishing: Cham, Switzerland, 2022; pp. 109–139; ISBN 978-3-030-89009-4.
  • 32.
    Akinsoji, A.H.; Adelodun, B.; Adeyi, Q.; et al. Integrating Machine Learning Models with Comprehensive Data Strategies and Optimization Techniques to Enhance Flood Prediction Accuracy: A Review. Water Resour. Manag. 2024, 38, 4735–4761. https://doi.org/10.1007/s11269-024-03885-x.
  • 33.
    Kim, S.-J.; Bae, S.-J.; Jang, M.-W. Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration Using Limited Climate Data. Sustainability 2022, 14, 11674. https://doi.org/10.3390/su141811674.
  • 34.
    Mienye, I.D.; Jere, N. A Survey of Decision Trees: Concepts, Algorithms, and Applications. IEEE Access 2024, 12, 86716–86727. https://doi.org/10.1109/ACCESS.2024.3416838.
  • 35.
    Shen, Y.; Ruijsch, J.; Lu, M.; et al. Random Forests-Based Error-Correction of Streamflow from a Large-Scale Hydrological Model: Using Model State Variables to Estimate Error Terms. Comput. Geosci. 2022, 159, 105019. https://doi.org/10.1016/j.cageo.2021.105019.
  • 36.
    Evgeniou, T.; Pontil, M. Support Vector Machines: Theory and Applications. In Machine Learning and Its Applications; Paliouras, G., Karkaletsis, V., Spyropoulos, C.D., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2049, pp. 249–257; ISBN 978-3-540-42490-1.
  • 37.
    Guo, G.; Wang, H.; Bell, D.; et al. KNN Model-Based Approach in Classification. In On the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE; Meersman, R., Tari, Z., Schmidt, D.C., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Vol. 2888, pp. 986–996; ISBN 978-3-540-20498-5.
  • 38.
    Di Franco, G.; Santurro, M. Machine Learning, Artificial Neural Networks and Social Research. Qual. Quant. 2021, 55, 1007–1025. https://doi.org/10.1007/s11135-020-01037-y.
  • 39.
    Van Houdt, G.; Mosquera, C.; Nápoles, G. A Review on the Long Short-Term Memory Model. Artif. Intell. Rev. 2020, 53, 5929–5955. https://doi.org/10.1007/s10462-020-09838-1.
  • 40.
    Fei, K.; Du, H.; Gao, L. Accurate Water Level Predictions in a Tidal Reach: Integration of Physics-Based and Machine Learning Approaches. J. Hydrol. 2023, 622, 129705. https://doi.org/10.1016/j.jhydrol.2023.129705.
  • 41.
    Asif, M.; Kuglitsch, M.M.; Pelivan, I.; et al. Review and Intercomparison of Machine Learning Applications for Short-Term Flood Forecasting. Water Resour. Manag. 2025, 39, 1971–1991. https://doi.org/10.1007/s11269-025-04093-x.
  • 42.
    Wang, G.; Yang, J.; Hu, Y.; et al. Application of a Novel Artificial Neural Network Model in Flood Forecasting. Env. Monit. Assess. 2022, 194, 125. https://doi.org/10.1007/s10661-022-09752-9.
  • 43.
    Li, J.; Wu, G.; Zhang, Y.; et al. Optimizing Flood Predictions by Integrating LSTM and Physical-Based Models with Mixed Historical and Simulated Data. Heliyon 2024, 10, e33669. https://doi.org/10.1016/j.heliyon.2024.e33669.
  • 44.
    Fofanah, A.J.; Koroma, S.; Sesay, A.B.; et al. Artificial Neural Network Model with Adaptive GMDH Technique for Non-Linear Regression Prediction. IJSER 2021, 12, 1142–1150. https://doi.org/10.14299/ijser.2021.05.05.
  • 45.
    Palchevsky, E.; Antonov, V.; Filimonov, N.; et al. Development of an Intelligent System for Early Forecasting and Modelling of Flood Situation on the Example of the Republic of Bashkortostan Using a Proprietary Machine and Deep Learning Library. J. Hydrol. 2024, 633, 130978. https://doi.org/10.1016/j.jhydrol.2024.130978.
  • 46.
    Tiu, E.S.K.; Huang, Y.F.; Ng, J.L.; et al. An Evaluation of Various Data Pre-Processing Techniques with Machine Learning Models for Water Level Prediction. Nat. Hazards 2022, 110, 121–153. https://doi.org/10.1007/s11069-021-04939-8.
  • 47.
    Jamali, B.; Haghighat, E.; Ignjatovic, A.; et al. Machine Learning for Accelerating 2D Flood Models: Potential and Challenges. Hydrol. Process. 2021, 35, e14064. https://doi.org/10.1002/hyp.14064.
  • 48.
    Zahura, F.T.; Goodall, J.L.; Sadler, J.M.; et al. Training Machine Learning Surrogate Models from a High-Fidelity Physics-Based Model: Application for Real-Time Street-Scale Flood Prediction in an Urban Coastal Community. Water Resour. Res. 2020, 56, e2019WR027038. https://doi.org/10.1029/2019WR027038.
  • 49.
    Kim, H.I.; Han, K.Y. Inundation Map Prediction with Rainfall Return Period and Machine Learning. Water 2020, 12, 1552. https://doi.org/10.3390/w12061552.
  • 50.
    Yan, J.; Jin, J.; Chen, F.; et al. Urban Flash Flood Forecast Using Support Vector Machine and Numerical Simulation. J. Hydroinform. 2018, 20, 221–231. https://doi.org/10.2166/hydro.2017.175.
  • 51.
    Letessier, C.; Cardi, J.; Dussel, A.; et al. Enhancing Flood Prediction Accuracy through Integration of Meteorological Parameters in River Flow Observations: A Case Study Ottawa River. Hydrology 2023, 10, 164. https://doi.org/10.3390/hydrology10080164.
  • 52.
    Shen, C. A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resour. Res. 2018, 54, 8558–8593. https://doi.org/10.1029/2018wr022643.
  • 53.
    An, H.; Ouyang, C. A hybrid framework for real-time flash flood forecasting in small ungauged catchments: Integrating hydrodynamic simulations with LSTM networks. J. Hydrol. 2025, 661, 133688. https://doi.org/10.1016/j.jhydrol.2025.133688.
  • 54.
    Xu, C.; Zhong, P.A.; Zhu, F.; et al. A hybrid model coupling process-driven and data-driven models for improved real-time flood forecasting. J. Hydrol. 2024, 638, 131494. https://doi.org/10.1016/j.jhydrol.2024.131494.
  • 55.
    Majhi, A.; Dhanya, C.T.; Chakma, S. Mutual Information Based Weighted Variance Approach for Uncertainty Quantification of Climate Projections. MethodsX 2023, 10, 102063. https://doi.org/10.1016/j.mex.2023.102063.
  • 56.
    Higuera Roa, O.; Bachmann, M.; Mechler, R.; et al. Challenges and Opportunities in Climate Risk Assessment: Future Directions for Assessing Complex Climate Risks. Environ. Res. Lett. 2025, 20, 053003. https://doi.org/10.1088/1748-9326/adc756.
  • 57.
    Wu, W.; Emerton, R.; Duan, Q.; et al. Ensemble Flood Forecasting: Current Status and Future Opportunities. WIREs Water 2020, 7, e1432. https://doi.org/10.1002/wat2.1432.
  • 58.
    Moges, E.; Demissie, Y.; Larsen, L.; et al. Review: Sources of Hydrological Model Uncertainties and Advances in Their Analysis. Water 2020, 13, 28. https://doi.org/10.3390/w13010028.
  • 59.
    Tudaji, M.; Nan, Y.; Tian, F. Assessing the Value of High-Resolution Data and Parameter Transferability across Temporal Scales in Hydrological Modeling: A Case Study in Northern China. Hydrol. Earth Syst. Sci. 2025, 29, 2633–2654. https://doi.org/10.5194/hess-29-2633-2025.
  • 60.
    Zhang, Z.; Zhang, Q.; Singh, V.P.; et al. River Flow Modelling: Comparison of Performance and Evaluation of Uncertainty Using Data-Driven Models and Conceptual Hydrological Model. Stoch. Env. Res. Risk Assess. 2018, 32, 2667–2682. https://doi.org/10.1007/s00477-018-1536-y.
  • 61.
    Zhu, Q.; Qin, X.; Zhou, D.; et al. Impacts of Spatiotemporal Resolutions of Precipitation on Flood Event Simulation Based on Multimodel Structures—A Case Study over the Xiang River Basin in China. Hydrol. Earth Syst. Sci. 2024, 28, 1665–1686. https://doi.org/10.5194/hess-28-1665-2024.
  • 62.
    Sutton, R.T. Climate Science Needs to Take Risk Assessment Much More Seriously. Bull. Am. Meteorol. Soc. 2019, 100, 1637–1642. https://doi.org/10.1175/BAMS-D-18-0280.1.
  • 63.
    Schumann, G.; Giustarini, L.; Tarpanelli, A.; et al. Flood Modeling and Prediction Using Earth Observation Data. Surv. Geophys. 2023, 44, 1553–1578. https://doi.org/10.1007/s10712-022-09751-y.
  • 64.
    Sood, A.; Smakhtin, V. Global Hydrological Models: A Review. Hydrol. Sci. J. 2015, 60, 549–565. https://doi.org/10.1080/02626667.2014.950580.
  • 65.
    Kurniawan, R.; Sujono, I.; Caesarendra, W.; et al. Detection of Flood-Affected Areas Using Multitemporal Remote Sensing Data: A Machine Learning Approach. Earth Sci. Inf. 2025, 18, 35. https://doi.org/10.1007/s12145-024-01549-3.
  • 66.
    Tao, Y.; Tian, B.; Adhikari, B.R.; et al. A Review of Cutting-Edge Sensor Technologies for Improved Flood Monitoring and Damage Assessment. Sensors 2024, 24, 7090. https://doi.org/10.3390/s24217090.
  • 67.
    Yuan, Q.; Shen, H.; Li, T.; et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges. Remote Sens. Environ. 2020, 241, 111716. https://doi.org/10.1016/j.rse.2020.111716.
  • 68.
    Tijerina‐Kreuzer, D.; Condon, L.; et al. Continental Hydrologic Intercomparison Project, Phase 1: A Large-Scale Hydrologic Model Comparison Over the Continental United States. Water Resour. Res. 2021, 57, e2020WR028931. https://doi.org/10.1029/2020wr028931.
  • 69.
    Luo, P.; Luo, M.; Li, F.; et al. Urban Flood Numerical Simulation: Research, Methods and Future Perspectives. Environ. Model. Softw. 2022, 156, 105478. https://doi.org/10.1016/j.envsoft.2022.105478.
  • 70.
    Chen, Z.; Lin, X.; Xiong, C.; et al. Modeling the Relationship of Precipitation and Water Level Using Grid Precipitation Products with a Neural Network Model. Remote Sens. 2020, 12, 1096. https://doi.org/10.3390/rs12071096.
  • 71.
    Chen, G.; Hou, J.; Liu, Y.; et al. Urban Inundation Rapid Prediction Method Based on Multi-Machine Learning Algorithm and Rain Pattern Analysis. J. Hydrol. 2024, 633, 131059. https://doi.org/10.1016/j.jhydrol.2024.131059.
  • 72.
    Dodangeh, E.; Choubin, B.; Eigdir, A.N.; et al. Integrated Machine Learning Methods with Resampling Algorithms for Flood Susceptibility Prediction. Sci. Total Environ. 2020, 705, 135983. https://doi.org/10.1016/j.scitotenv.2019.135983.
  • 73.
    Ghorpade, P.; Gadge, A.; Lende, A.; et al. Flood Forecasting Using Machine Learning: A Review. In Proceedings of the 2021 8th International Conference on Smart Computing and Communications (ICSCC), Kochi, Kerala, India, 1–3 July 2021.
  • 74.
    Chen, J.-C.; Shu, C.-S.; Ning, S.-K.; et al. Flooding Probability of Urban Area Estimated by Decision Tree and Artificial Neural Networks. J. Hydroinform. 2008, 10, 57–67. https://doi.org/10.2166/hydro.2008.009.
  • 75.
    Elsafi, S.H. Artificial Neural Networks (ANNs) for Flood Forecasting at Dongola Station in the River Nile, Sudan. Alex. Eng. J. 2014, 53, 655–662. https://doi.org/10.1016/j.aej.2014.06.010.
  • 76.
    Teng, J.; Jakeman, A.J.; Vaze, J.; et al. Flood Inundation Modelling: A Review of Methods, Recent Advances and Uncertainty Analysis. Environ. Model. Softw. 2017, 90, 201–216. https://doi.org/10.1016/j.envsoft.2017.01.006.
  • 77.
    Tehrany, M.S.; Pradhan, B.; Mansor, S.; et al. Flood Susceptibility Assessment Using GIS-Based Support Vector Machine Model with Different Kernel Types. CATENA 2015, 125, 91–101. https://doi.org/10.1016/j.catena.2014.10.017.
  • 78.
    Barrera-Animas, A.Y.; Oyedele, L.O.; Bilal, M.; et al. Rainfall Prediction: A Comparative Analysis of Modern Machine Learning Algorithms for Time-Series Forecasting. Mach. Learn. Appl. 2022, 7, 100204. https://doi.org/10.1016/j.mlwa.2021.100204.
  • 79.
    Heydari, S.; Reza Nikoo, M.; Mohammadi, A.; et al. Two-Stage Meta-Ensembling Machine Learning Model for Enhanced Water Quality Forecasting. J. Hydrol. 2024, 641, 131767. https://doi.org/10.1016/j.jhydrol.2024.131767.
  • 80.
    Ikram, R.M.A.; Hazarika, B.B.; Gupta, D.; et al. Streamflow Prediction in Mountainous Region Using New Machine Learning and Data Preprocessing Methods: A Case Study. Neural Comput. Applic 2022, 35, 9053–9070. https://doi.org/10.1007/s00521-022-08163-8.
  • 81.
    Kigo, S.N.; Omondi, E.O.; Omolo, B.O. Assessing Predictive Performance of Supervised Machine Learning Algorithms for a Diamond Pricing Model. Sci. Rep. 2023, 13, 17315. https://doi.org/10.1038/s41598-023-44326-w.
  • 82.
    Shim, J.; Hong, S.; Lee, J.; et al. Deep Learning with Data Preprocessing Methods for Water Quality Prediction in Ultrafiltration. J. Clean. Prod. 2023, 428, 139217. https://doi.org/10.1016/j.jclepro.2023.139217.
  • 83.
    Xiao, H.; Cinnella, P. Quantification of Model Uncertainty in RANS Simulations: A Review. Prog. Aerosp. Sci. 2018, 108, 1–31.
  • 84.
    Teweldebrhan, A.T.; Burkhart, J.F.; Schuler, T.V. Parameter Uncertainty Analysis for an Operational Hydrological Model Using Residual-Based and Limits of Acceptability Approaches. Hydrol. Earth Syst. Sci. 2018, 22, 5021–5039. https://doi.org/10.5194/hess-22-5021-2018.
  • 85.
    Razavi, S.; Tolson, B.A.; Burn, D.H. Review of Surrogate Modeling in Water Resources. Water Resour. Res. 2012, 48, e2020WR028931. https://doi.org/10.1029/2011wr011527.
  • 86.
    Chowdhuri, I.; Pal, S.C.; Chakrabortty, R. Flood Susceptibility Mapping by Ensemble Evidential Belief Function and Binomial Logistic Regression Model on River Basin of Eastern India. Adv. Space Res. 2020, 65, 1466–1489. https://doi.org/10.1016/j.asr.2019.12.003.
  • 87.
    Momeneh, S.; Nourani, V. Performance Evaluation of Artificial Neural Network Model in Hybrids with Various Preprocessors for River Streamflow Forecasting. AQUA—Water Infrastruct. Ecosyst. Soc. 2023, 72, 947–968. https://doi.org/10.2166/aqua.2023.010.
  • 88.
    Albano, R.; Limongi, C.; Dal Sasso, S.F.; et al. Flood Scenario Spatio-Temporal Mapping via Hydrological and Hydrodynamic Modelling and a Remote Sensing Dataset: A Case Study of the Basento River (Southern Italy). Int. J. Disaster Risk Reduct. 2024, 111, 104758. https://doi.org/10.1016/j.ijdrr.2024.104758.
  • 89.
    Tarasova, L.; Merz, R.; Kiss, A.; et al. Causative Classification of River Flood Events. Wiley Interdiscip. Rev. Water 2019, 6, e1353.
  • 90.
    Feyisa, G.L.; Meilby, H.; Fensholt, R.; et al. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029.
  • 91.
    Jin, H.; Fang, S.; Chen, C. Mapping of the Spatial Scope and Water Quality of Surface Water Based on the Google Earth Engine Cloud Platform and Landsat Time Series. Remote Sens. 2023, 15, 4986. https://doi.org/10.3390/rs15204986.
  • 92.
    Coates, G.; Li, C.; Ahilan, S.; et al. Agent-Based Modeling and Simulation to Assess Flood Preparedness and Recovery of Manufacturing Small and Medium-Sized Enterprises. Eng. Appl. Artif. Intell. 2019, 78, 195–217. https://doi.org/10.1016/j.engappai.2018.11.010.
  • 93.
    Frame, J.M.; Kratzert, F.; Klotz, D.; et al. Deep Learning Rainfall–Runoff Predictions of Extreme Events. Hydrol. Earth Syst. Sci. 2022, 26, 3377–3392. https://doi.org/10.5194/hess-26-3377-2022.
  • 94.
    Lou, P.; Wu, T.; Yin, G.; et al. A Novel Framework for Multiple Thermokarst Hazards Risk Assessment and Controlling Environmental Factors Analysis on the Qinghai-Tibet Plateau. CATENA 2024, 246, 108367. https://doi.org/10.1016/j.catena.2024.108367.
  • 95.
    Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
  • 96.
    Yang, L.; Shami, A. On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice. Neurocomputing 2020, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061.
  • 97.
    Keyes, D.E.; McInnes, L.C.; Woodward, C.; et al. Multiphysics Simulations: Challenges and Opportunities. Int. J. High. Perform. Comput. Appl. 2013, 27, 4–83. https://doi.org/10.1177/1094342012468181.
  • 98.
    Kruse, D.A.; Schonbein, W.; Dosanjh, M.G.F. A Statistical Analysis of HPC Network Tuning. In Proceedings of the Proceedings of the SC’23 Workshops of the International Conference on High Performance Computing, Network, Storage, and Analysis, Denver, CO, USA, 12–17 November 2023; pp. 458–465.
  • 99.
    Borrell, R.; Dosimont, D.; Garcia-Gasulla, M.; et al. Heterogeneous CPU/GPU Co-Execution of CFD Simulations on the POWER9 Architecture: Application to Airplane Aerodynamics. Future Gener. Comput. Syst. 2020, 107, 31–48. https://doi.org/10.1016/j.future.2020.01.045.
  • 100.
    Mira, D.; Pérez-Sánchez, E.J.; Borrell, R.; et al. HPC-Enabling Technologies for High-Fidelity Combustion Simulations. Proc. Combust. Inst. 2023, 39, 5091–5125. https://doi.org/10.1016/j.proci.2022.07.222.
  • 101.
    Pathiraja, S.; Moradkhani, H.; Marshall, L.; et al. Data-Driven Model Uncertainty Estimation in Hydrologic Data Assimilation. Water Resour. Res. 2018, 54, 1252–1280. https://doi.org/10.1002/2018wr022627.
  • 102.
    Clark, M.P.; Slater, A.G.; Rupp, D.E.; et al. Framework for Understanding Structural Errors (FUSE): A Modular Framework to Diagnose Differences between Hydrological Models. Water Resour. Res. 2008, 44, W00B02. https://doi.org/10.1029/2007wr006735.
  • 103.
    Gupta, H.V.; Clark, M.P.; Vrugt, J.A.; et al. Towards a Comprehensive Assessment of Model Structural Adequacy. Water Resour. Res. 2012, 48, W08301. https://doi.org/10.1029/2011wr011044.
  • 104.
    Seydi, S.T.; Kanani-Sadat, Y.; Hasanlou, M.; et al. Comparison of Machine Learning Algorithms for Flood Susceptibility Mapping. Remote Sens. 2022, 15, 192. https://doi.org/10.3390/rs15010192.
  • 105.
    Yu, X.; Wang, Y.; Wu, L.; et al. Comparison of Support Vector Regression and Extreme Gradient Boosting for Decomposition-Based Data-Driven 10-Day Streamflow Forecasting. J. Hydrol. 2020, 582, 124293. https://doi.org/10.1016/j.jhydrol.2019.124293.
  • 106.
    Qi, W.; Ma, C.; Xu, H.; et al. A Review on Applications of Urban Flood Models in Flood Mitigation Strategies. Nat. Hazards 2021, 108, 31–62. https://doi.org/10.1007/s11069-021-04715-8.
  • 107.
    Tien Bui, D.; Hoang, N.-D.; Martínez-Álvarez, F.; et al. A Novel Deep Learning Neural Network Approach for Predicting Flash Flood Susceptibility: A Case Study at a High Frequency Tropical Storm Area. Sci. Total Environ. 2020, 701, 134413. https://doi.org/10.1016/j.scitotenv.2019.134413.
  • 108.
    Xu, T.; Liang, F. Machine Learning for Hydrologic Sciences: An Introductory Overview. WIREs Water 2021, 8, e1533. https://doi.org/10.1002/wat2.1533.
  • 109.
    Li, H.; Zhang, C.; Chu, W.; et al. A Process-Driven Deep Learning Hydrological Model for Daily Rainfall-Runoff Simulation. J. Hydrol. 2024, 637, 131434. https://doi.org/10.1016/j.jhydrol.2024.131434.
  • 110.
    Li, D.; Ma, J.; Rao, K.; et al. Prediction of Rainfall Time Series Using the Hybrid DWT-SVR-Prophet Model. Water 2023, 15, 1935. https://doi.org/10.3390/w15101935.
  • 111.
    Solanki, H.; Vegad, U.; Kushwaha, A.; et al. Improving Streamflow Prediction Using Multiple Hydrological Models and Machine Learning Methods. Water Resour. Res. 2025, 61, e2024WR038192. https://doi.org/10.1029/2024wr038192.
  • 112.
    Rozos, E. Assessing Hydrological Simulations with Machine Learning and Statistical Models. Hydrology 2023, 10, 49. https://doi.org/10.3390/hydrology10020049.
  • 113.
    Beven, K. Facets of Uncertainty: Epistemic Uncertainty, Non-Stationarity, Likelihood, Hypothesis Testing, and Communication. Hydrol. Sci. J. 2016, 61, 1652–1665. https://doi.org/10.1080/02626667.2015.1031761.
  • 114.
    Feng, D.; Zheng, Y.; Mao, Y.; et al. An Integrated Hydrological Modeling Approach for Detection and Attribution of Climatic and Human Impacts on Coastal Water Resources. J. Hydrol. 2018, 557, 305–320. https://doi.org/10.1016/j.jhydrol.2017.12.041.
  • 115.
    Zounemat-Kermani, M.; Batelaan, O.; Fadaee, M.; et al. Ensemble Machine Learning Paradigms in Hydrology: A Review. J. Hydrol. 2021, 598, 126266. https://doi.org/10.1016/j.jhydrol.2021.126266.
  • 116.
    Solakian, J.; Maggioni, V.; Lodhi, A.; et al. Investigating the Use of Satellite-Based Precipitation Products for Monitoring Water Quality in the Occoquan Watershed. J. Hydrol. Reg. Stud. 2019, 26, 100630. https://doi.org/10.1016/j.ejrh.2019.100630.
  • 117.
    Schlaffer, S.; Matgen, P.; Hollaus, M.; et al. Flood Detection from Multi-Temporal SAR Data Using Harmonic Analysis and Change Detection. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 15–24. https://doi.org/10.1016/j.jag.2014.12.001.
  • 118.
    Zhang, Q.; Yang, L.T.; Chen, Z.; Li, P. A Survey on Deep Learning for Big Data. Inf. Fusion. 2018, 42, 146–157. https://doi.org/10.1016/j.inffus.2017.10.006.
  • 119.
    Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003.
  • 120.
    Nguyen, H.D.; Nguyen, Q.-H.; Dang, D.K.; et al. A Novel Flood Risk Management Approach Based on Future Climate and Land Use Change Scenarios. Sci. Total Environ. 2024, 921, 171204. https://doi.org/10.1016/j.scitotenv.2024.171204.
  • 121.
    Liu, M.; Lü, H.; Lindenschmidt, K.-E.; et al. Hazard Assessment and Prediction of Ice-Jam Flooding for a River Regulated by Reservoirs Using an Integrated Probabilistic Modelling Approach. J. Hydrol. 2022, 615, 128611. https://doi.org/10.1016/j.jhydrol.2022.128611.
  • 122.
    Alkaabi, K.; Sarfraz, U.; Darmaki, S.A. A Deep Learning Framework for Flash-Flood-Runoff Prediction: Integrating CNN-RNN with Neural Ordinary Differential Equations (ODEs). Water 2025, 17, 1283.
  • 123.
    Zhang, W.; Wang, H.; Lin, Y.; et al. Reservoir Inflow Predicting Model Based on Machine Learning Algorithm via Multi‐model Fusion: A Case Study of Jinshuitan River Basin. IET Cyber-Syst. Robot. 2021, 3, 265–277. https://doi.org/10.1049/csy2.12015.
  • 124.
    Pham, B.T.; Luu, C.; Dao, D.V.; et al. Flood Risk Assessment Using Deep Learning Integrated with Multi-Criteria Decision Analysis. Knowl.-Based Syst. 2021, 219, 106899. https://doi.org/10.1016/j.knosys.2021.106899.
  • 125.
    Ahmed, A.A.; Sayed, S.; Abdoulhalik, A.; et al. Applications of Machine Learning to Water Resources Management: A Review of Present Status and Future Opportunities. J. Clean. Prod. 2024, 441, 140715. https://doi.org/10.1016/j.jclepro.2024.140715.
  • 126.
    Moishin, M.; Deo, R.C.; Prasad, R.; et al. Designing Deep-Based Learning Flood Forecast Model with ConvLSTM Hybrid Algorithm. IEEE Access 2021, 9, 50982–50993. https://doi.org/10.1109/ACCESS.2021.3065939.
  • 127.
    Imran, M.; Sheikh Abdul Khader, P.; Rafiq, M.; et al. Forecasting Water Level of Glacial Fed Perennial River Using a Genetically Optimized Hybrid Machine Learning Model. Mater. Today: Proc. 2021, 46, 11113–11119. https://doi.org/10.1016/j.matpr.2021.02.256.
  • 128.
    Ni, C.; Fam, P.S.; Marsani, M.F. A Data-Driven Method and Hybrid Deep Learning Model for Flood Risk Prediction. Int. J. Intell. Syst. 2024, 2024, 3562709. https://doi.org/10.1155/2024/3562709.
  • 129.
    Shi, X.; Gao, Z.; Lausen, L.; et al. Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model. Adv. Neural Inf. Process. Syst. 2017, 30.
  • 130.
    Valipour, M.; Banihabib, M.E.; Behbahani, S.M.R. Comparison of the ARMA, ARIMA, and the Autoregressive Artificial Neural Network Models in Forecasting the Monthly Inflow of Dez Dam Reservoir. J. Hydrol. 2013, 476, 433–441. https://doi.org/10.1016/j.jhydrol.2012.11.017.
  • 131.
    Sharma, S.; Kumari, S. Comparison of Machine Learning Models for Flood Forecasting in the Mahanadi River Basin, India. J. Water Clim. Chang. 2024, 15, 1629–1652. https://doi.org/10.2166/wcc.2024.517.
  • 132.
    Tabbussum, R.; Dar, A.Q. Modelling Hybrid and Backpropagation Adaptive Neuro-Fuzzy Inference Systems for Flood Forecasting. Nat. Hazards 2021, 108, 519–566. https://doi.org/10.1007/s11069-021-04694-w.
  • 133.
    Nie, Y.; Wang, H.; Zhang, H.; et al. Research on Flood Prediction Based on Optimized AI Model VMD_BiLSTM: A Case Study in BeiJing Flood, China. Res. Sq. 2025. https://doi.org/10.21203/rs.3.rs-5351059/v1.
  • 134.
    Fan, Z.; Zhang, J.; Chen, Y.; et al. Urban Flood Prediction Model Based on Transformer-LSTM-Sparrow Search Algorithm. Water 2025, 17, 1404. https://doi.org/10.3390/w17091404.
  • 135.
    Zhao, X.; Dong, S.; Rao, H.; et al. Water Flow Forecasting Model Based on Bidirectional Long- and Short-Term Memory and Attention Mechanism. Water 2025, 17, 2118. https://doi.org/10.3390/w17142118.
  • 136.
    Darabi, H.; Torabi Haghighi, A.; Rahmati, O.; et al. A Hybridized Model Based on Neural Network and Swarm Intelligence-Grey Wolf Algorithm for Spatial Prediction of Urban Flood-Inundation. J. Hydrol. 2021, 603, 126854. https://doi.org/10.1016/j.jhydrol.2021.126854.
  • 137.
    Akbarian, H.; Gheibi, M.; Hajiaghaei-Keshteli, M.; et al. A Hybrid Novel Framework for Flood Disaster Risk Control in Developing Countries Based on Smart Prediction Systems and Prioritized Scenarios. J. Environ. Manag. 2022, 312, 114939. https://doi.org/10.1016/j.jenvman.2022.114939.
  • 138.
    Sulaiman, M.; El-Shafie, A.; Karim, O.; et al. Real-time flood forecasting by employing artificial neural network based model with zoning matching approach. Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 9357–9393. https://doi.org/10.5194/hessd-8-9357-2011.
  • 139.
    Tiwari, M.K.; Chatterjee, C. Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach. J. Hydrol. 2010, 394, 458–470. https://doi.org/10.1016/j.jhydrol.2010.10.001.
  • 140.
    Anar, P.L.; Darani, H.S.; Nafarzadeg, A.R. Application of ANN and ANFIS Models for Estimating Total Infiltration Rate in an Arid Rangeland Ecosystem. Res. J. Environ. Sci. 2011, 5, 236–247. https://doi.org/10.3923/rjes.2011.236.247.
  • 141.
    Mosavi, A.; Ozturk, P.; Chau, K. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. https://doi.org/10.3390/w10111536.
  • 142.
    Hirabayashi, Y.; Mahendran, R.; Koirala, S.; et al. Global Flood Risk under Climate Change. Nat. Clim. Chang. 2013, 3, 816–821. https://doi.org/10.1038/nclimate1911.
  • 143.
    Nanda, A.R.; Nurnawaty; Mansida, A.; et al. A Bibliometric Analysis of Trends in Rainfall-Runoff Modeling Techniques for Urban Flood Mitigation (2005–2024). Results Eng. 2025, 26, 104927. https://doi.org/10.1016/j.rineng.2025.104927.
  • 144.
    Cui, P.; Bazai, N.A.; Qiang, Z.; et al. Flood Risk Assessment with Machine Learning: Insights from the 2022 Pakistan Mega-Flood and Climate Adaptation Strategies. NPJ Nat. Hazards 2025, 2, 42. https://doi.org/10.1038/s44304-025-00096-1.
  • 145.
    Liu, W.; Feng, Q.; Engel, B.A.; et al. A Probabilistic Assessment of Urban Flood Risk and Impacts of Future Climate Change. J. Hydrol. 2023, 618, 129267. https://doi.org/10.1016/j.jhydrol.2023.129267.
  • 146.
    Kratzert, F.; Klotz, D.; Herrnegger, M.; et al. Toward Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning. Water Resour. Res. 2019, 55, 11344–11354. https://doi.org/10.1029/2019wr026065.
  • 147.
    Barbhuiya, S.; Manekar, A.; Ramadas, M. Performance Evaluation of ML Techniques in Hydrologic Studies: Comparing Streamflow Simulated by SWAT, GR4J, and State-of-the-Art ML-Based Models. J. Earth Syst. Sci. 2024, 133, 136. https://doi.org/10.1007/s12040-024-02340-0.
Share this article:
How to Cite
Zhang, J.; Guo, W.; Chang, S. W.; Nguyen, D. D.; Ngo, H. H. Data-Driven Innovations in Flood Hazard Assessment with Machine Learning. Earth: Environmental Sustainability 2025, 1 (1), 21–41. https://doi.org/10.53941/eesus.2025.100003.
RIS
BibTex
Copyright & License
article copyright Image
Copyright (c) 2025 by the authors.